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MOST IMPORTANT SYMBOLS

v

Ve s

“nabl.a”spatial differentiation, dimensions
l/cm

grad 6; (VI) = div v

rot ~, (_~]v = (v grad)v—-

sign of Laplacian, dimensions l/cm2

velocity

pressure
bar =

vector of fluid particle, cm/sec

determined by convective phenmena,
@n/cJnz

gravity acceleration vector, g = 981 cm/sec2 4..

coefficient of-mhange of density with temper-
ature of fluid, l/deg

-
.

coefficient of change of density with concen-
tration cm3/g —

temperature, ‘C

coefficient of kinematic tiscosity of fluid,
c3r12/sec

coefficient of temperature conductivity of
fluid, m2/sec

coefficient of diffusion in fluid, cm2/sec

density of fluid, g/cm3 ..

concentration of admixlxme, g/cm3

3element of volume, cm
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TNWESTIGA3ZON

1. Definition of Gravitational Convection

Gravitational convection is the term used in hydrodynamics to de-
note the phenomenon that occurs in the field of universal gravitation
in connection tith the fact that the different particles of a fluid pos-
sess different densities.1 The denser particles sink and the less dense
particles float in the surrounding fluid. We understand,’’fltid”to be a
liquid that possesses surface tension as well as gases. The hydrodynsm-
ical side of the problem lies in the fact tkt the particles of the
fluid do not move in empty space but move among other shilar particles
so that each particle in its motion ogcupies only the place of sane
other particles it pushes aside. A “particle of fluid” contains within
itself a huge number of molecules.

The reason for the differences in density usually lies in the dif-
ferences in temperature or ccmrposition,particularly in the concentra-
tion of the adixlmres dissolved in the fluid. In addition to these
most cmmon reasons for the differences in density, other causes may be
present (e.g., electrostriction, thermoma~etic (ref. 3), and thermo-
electrostatic effects). The most widely studied form of gravitational
convection is the temperature (or heat) convection and for this reason
it is desirable to investigate this phenomenon in more detail. It is
not difficult to relate it with the diffusion (or concentration) form
of convection since the correspoting quantitative expressions reveal
great similarity.

The convection is called fYee if the stresses (including the normal
pressure) to which the fluid is subJected at its boundaries do not per-
form mechanical work, that is, if all the boundaries of the fluid are
stationary. The case where this is not true is termed forced convection.
It corresponds to the action on the fluid OY some mechanical suction
PwiW the fluid.

besides ~vitational convection there are the phenmena of elec-
trostatic convection {ref. 1) and magnetic convection (ref. 2) that
arise in the electrostatic and magnetic fields.
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may also be encountered an intermediate case whe”refree con-
~osed on the forced motion of the

The present report concerns itself almost
convection.

pumped fluid.(ch. 5,

exclusively with free

2. M. V. Lomonosov - Initiator of Scientific Problem

of Thermal Gravitational Convection

The first investigator to approach scientifically the phenomena of
heat convection in nature was the academician. V. Lomonosov, who first
correctly explained the fhndsmentalmechanism of meteorological phenom-
ena. In his work “OnAtmospheric Phenmnena Arising fkm Electrical
Forces” (1753), he discussed the meteorological phenomena in detail,
adduced proofs of the correctness of his explanations, and urgently ad-
vocated the scientific views he had worked out.

After first pointing out the importance of the prediction of the
weather for human activities, and the difficulties and unpopularity of
such predictions, Lomonosov continues, “I have often wondered when I ob-
served that in the winter time after the thawing of the air_}n which
snow had melted terrible hosts suddenly set in, which, after a few
hours, made the mercury in a thermometer drop from 30 or 50 above freez-
ing2 to 30° below freezing and at the same time occupy a space of more
than 100 miles. Comparing these with the winters of 1709 and 1740 which
were fierce almost over the entire European continent, I wondered even
more and very greatly desired to seek the cause of such a sharp change.
Most remarkable of all was the fact that thaws almost always occur with
air motion and a strong tendency of the weather to cloudiness, while on
the contr~, a frost begins to show its rigor after the sky has cleared”
(pp. 13-14).

Lomonosov also noted that fluids are more heat conductive than
solid bodies when heat is conducted upwards: “b agreement with sound
considerations is the fact that the fluidity of sea water and the degree
of temperature above or near the l%eezing point is maintained for a
large extent of the sea and also for the subterranean heat w&ich passes
through the sea bottom. Thus, the open seas that are &ree &om ice im-
part more heat to the winter air tlxanmother earth locked in a frozen
shell and covered with deep snows which bar the underground heat”
(p. 15).

-.

2The author refers to a 150° temperature scale (instead of the 100°
Celsius scale).

..
.

.

.
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Lomonosav asked further, “What is the reason that sea winds stop
blowing?” And he answered: “~ giving this question my attention I ob-
served a difference of heat and density between the lower aii and that
which moves upward. That the heat is greater below than above, or
speaking generally, in the winter a stronger cold exists above the clouds
than below is a judgment obtainedby an investigation artificially per-
formed and confirmed by agreement with the atmospheric phenomenon. The
upper part of the atmosphere itse13 is much less heated by the sun than
the lower part. Moreover, the winter surface heatedby the sun and the
rays reflected by it have a greater effect in the lower atmosphere than
in the middle or u~er atmosphere. The summer hail and the frozen sum-
mits of high mountains reveal the truth of this to the eyes and impress
on us the fact that in the midst of smmer there is always a rigorous
winter not very high above our heads.”

Referring to geodetists, who, in the Peruvian mountains “measured
the earth’s sphere and suffered from &costs and exuded perspiration,”
Lamonosov continues, “By a prolonged and painstaking skill and an accur-
ate computation, it has been shown that at a known and definite height
of the entire atmosphere there reigns a rigorous and continual frost
that covers the summits of high mountains with a perpetual snow. If
this extends continuously umder the very equator, it is easy to conclude
how great the force of the tiost is in our climate nesr the same summit.”

.-
Having remarked on the phenomenon of hail, Lamnosov continues,

“However, this in truth occurs and clearly shows the terrible frost pro-
duced at altitude in the snow nucleus of the falling hail.” Remarking
that in Yeniseisk frosts of 131° below freezing were observed (-87.50 C),
ass- that the same temperature prevails at the height of 1 verst
(1.0668 km), and ccmputing the corresponding densities of the air,
Lomonosov arrived at the follotig conclusion: “Therefore, it is clear
that the lower atmosphere is often less dense and proportionately lighter
than the upper. This state of the air, which sod-d be studied further,
is sufficiently evident ticm Aerometic rules and is also confirmed by
exsmples. I have explained first that of all the motion of the air in
mine pits arises &om a different density, where at 50 or less sajenes
(1 sajene = 2.334 meters) its flow arises from these causes. Moreover,
even in houses in tinter, the warm air near the stove rises and, the
cool air near the windows descends, a phenomenon which can easily be
seen by observing the motion of smoke. Therefore, to a height,
which extends over 100 or 200 sajenes, the air of the lower weight
opposes the natural laws. It descends and gradually mixes with the
lower air casting a severe frost over us. It descends without appreci-
able motion since in one second it hardly moves several inches, and h
two hours it drops 100 or 200 sajenes contenting with the currents that
rise to meet it.” As an experimental proof of this hypothesis, Lmonosov
refers to the observation of fumes issuing frcm pipes; but still more
profound is the following rmark: “A second effect of these motions is
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the clearness of the sky, for although here the density of the air is
largely a casual f’actor,by their rising and sinking, the clouds spread
over a large area, then thin out and disappear. Thus, the sudden winter
frosts arise by the lowering of the middle atmosphere. Therefore, the
fkct that it begins without any motion of the wind ceases to be remark-
able. Such a drop of the middle “atmosphereinto.the lower must occur in
the summer, a circumstancewhich the disposition.of the air tending to-
ward this drop confirms sufficiently. Let us assume that the air, in a
state to produce hail in summer, is at a height of 3CKsaje-%s and con-
tains within it a temperature of.50° below freezhg (which in all ~rob-
ability may be affirmed); at which time the air in the lower atmosphere
near the ground is heated to 40° or 50° above the previously mentioned
freezing point: Then, in accordance with my expertients md computations,
the density of the upper air as compared.with the.lower air is of the
ratio 6:5; but by the pressure of the upper air, the lower air is com-
pressed and becomes more dense by’about one-tenth ~art. In this state,
by the immovable laws of nature, the upper part of the atmosphere should
descend deep enough into the lower part so when mixed with the warm
air, it will come to equilibrium. This flow of rising and descending
air must occur as often as the weight of the upper atmosphere exceeds
the weight of the lower; in addition, the lower a-irmust meet-the upper
and contend with the upper at a different height and different tendency
in proportion to the height and ~fference in heat and density. Finally,
this till occur more easily when, by the strong sugmer heat, the surface
of the earth is heated, and the air lying above the earth wa’ms and ex-
pands at the same time that an exceeding great cold above the clouds con-
denses the middle part of the atmosphere.” —

A little further on Lomonosov continues, “But.as soon a–~the lower
air expands by the force of the heat and becomes more rare, the cold and
dense part of the atmosphere must descend downward-and the l~wer air
rise upward in its place. I shall try to present.the phenomena of these
interchanges as briefly as possible to your mental eyes, as far as may
be understood flrommy words and as you yourselves-have seen–~d can re-
member. When the upper.atmosphere of a large weig@ desceniisto the
bottcm, it does not spread everywhere at the same horizont~.plane, but
for different circumstances of the solar rays, according to fiheposition
of the clouds and the unevenness of the ground...surface,it produces a
different rarefaction in the air. And so it descends in pk”ces such as
the shade of a mountain, or a high building, or a thick cloud where the
air is thicker and heavier. It rises upwards where the slope of a moun-
tain is turned to the motion of the sun, or through cloud openings, sd
is heated by the impinging rays. For this reason,when the thunder
clouds ascend before the rain, a large part of the lower clouds move up-
ward and downward like hills; fleecy vapors spread toward the”earth and
eddying whirls howl; dark abysses open; and above these phenatnenathe
clear sky is covered with a dark blue color. All these circ~stances
then show, that when a part of the middle atmosphere filled tith hot

r

4

.
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vapors descends and covers the clearness of the s@ with a blue darlmess,

* penetrates the lower clouds with its uneven descent, passes through these,
. and contends with the ,encounteringair’t(P. 22).

After several lines Lcanonosovagain points out, “The more the lower
part of the atmosphere is heated, the more readily the upper part lawers
itself into it. Whichever part feels less heat rarifies to a lesser de-
gree. This can conveniently be ascertained from the rise of the mercury
in a thermometer and the loweri~of the atmospheric pressure. When the4al

~ solar rays intersect through the clouds, the air cools in the shade of
the clouds and must wazm up. For this reason, it would be necessary for
the air to move frcn the edges of the shade to its center. A similar
action should follow from the growth of falling rain &ops because the
humid vapors and the water particles unite and heat the”large quantiti&
of air in them. However, such motion of the air toward the center of
the shade hardly ever occurs, but I do not doubt that the contrsry has
been the case as observed by all of you. For the advancing clouds
charged with lightening not only are preceeded by rushing motions but also
passing by, give forth strong winds to the side, leaving behind a still-
ness over a large area. Where does this stream of-air arise? It arises
from the pressure of the upper atmosphere, which in compressing the
lower is broken up on all sides and strives particularly toward that
side where it encounters the least resistance” (p. 24).

Turning to the effect of the local topogra@y Lcmonosov states fur-
L ther, “The air in mountainous localities seldcm is in equilibrium, be-
. cause it must rise in places facing the sun, descend in the shade, and

thereby more easily draw to itself a part of the cold and heavy upper
atmosphere which accelerates its motion and moves it nearer to the
ground. By the a~eement of so large a number of changes and phenanena,
I hope to have shown that my theory does not rest on a weak foundation.”

After several pages, Lomonosov returns to the subject of convection.
“After the setting of the sun, the lower atmosphere cools more rapidly
than the earth’s surface, which is saturated Wth the moisture of vegeta-
tion. Through this, the cold air, on coming in contact with the still
warm earth, is heated, expands, becomes lighter, and rises until, on be-
ing cooled, it canes to equilibriwn” (pp. 39-40).

When he came forward with this e=ustive explanation of convective
meteorological phenomena, it was naturally hpossible for Lcmonosov not
to encounter oppositions and objections. For this reason, he found it
necessary to give in addition “proper explanations on the matter of elec-
trical atmospheric phenomena” (p. 65). The most important and colorful
of these explanations is the first: “The stiject of the descent and as-
cent of the atmosphere has been briefly touched upon by Mr. F&nklin in
his letters. However, that I owe nothing to him in my theory as to the
cause of an electrical force in the air is clear from the folloting

-.—

)
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par&raphs: (1) concerning the descent of the upper air, I had already
r-

given it thought and discussed it several years ago. I saw the Franklin ,.
papers for the first the when my Mscourse was almost completed, in
which matter I refer to my colleagues; (2) the descent of the upper

m

atmosphere was proposed by Rranklin in a report of only a few words. I
deduced my theory from the sudden setting in of.great frosts, that is,
on the basis of circumstances that are unknown in Philade@hia, where
Iknklin lives; (3) 1 proved in a memorandum that the uppe~ air is not
only able, but at tties must descend into the lower air; ahd (4) on this
basis I have e@Wined many phenomena connected with the thundering g

force, of which no trace is mentioned by IYanklin. All this is added P

here not because I want to put myself above him, but is added in order
to follow the wish ofmy colleagues, who demanded that I subjoin my
justification” (p. 65).

The theory ofM. V. Lamonosov is based on carefully worked tests:
m. “On Multiple Causes,” page 17, line 31. The tests for determining
the different densities of the air at different degrees of heat, for all
otherwise equal conditions, were studied by me in mancmetric tubes of
equal width without bulbs and without using other vessels. Although
the different quantity of vapors changed the proportion of the expansion,
the average was found to be correct. That is, air 50° below tieezing
as ccmpared with air which is warm at the aforementioned freezing point
is in volume ratio 10:11, but as compared with air at 50° above the *
freezing, the warm air is in the ratio of 10:12 a 5:6. Hence, to 4°
above the &eezing there corresponds a volume ofiair of 554, and to 131° d

below ?&eezing, there corresponds a volume of air of 419. For this rea- .

son, the volume of the former to that of the latter till be 554:419, or
almost 4:3. That is, the air of the lower atmosphere will be lighter
than the other by a one-fourth part. V. “My Explanation,” page 18, line
8. “In addition to the motion of the air which occurs in mines, ex-
plained in the new Commentaries in the first volume, there are natural
proofs of the ascending and descending of air in the fl?eeatmosphere”
(p. 66). Further on, Lcanonosovpresents, explains, and illustrates the
case of diurnal winds on the Waldstatt Sea in the Alps. He ccmnpleted
this example with the words: “Moreover, in sultry summer days the
ground surface a~ently swells because the rising warm air mixes with
the descending cold air” (p. 67). (See also ch. 13.)

After a new ccmputaticm of the coefficient of expansion of the air
in “ExplanationVI,” Lcmonosov in “Explanation VII” gives a figure which
leaves no doubt that he discovered, understood, and quite correctly ex-
plained the idea of convection.

In another of his works, Lomonosov again returns to the convective
phenanena: “On the lRreeMotion of Air Observed in Mines fibm the First
Volume of New Commentaries,” 1763, (ref. 4). Here he describes and ex-
plains two cases of convection that take place in mines if the following
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conditions are observed: (1) the mine must have two openings on the

.. botta surface situated at different heights above the sea levelz amd
? (2) the temperature of the fYee air must differ from the temperature of

the ground layers cut through by the mine (ch. 5, sec. 4).

The excerpts”quoted previously show that M. V. Lomonosov was the
first person to study carefully the phenomenon of heat convection as ti
result of many yesrs of observation, to explain correctly this ph&om-
enon, to lay the foundations of meteorological phenomena, and to put--
forth much effort b popularizing the laws reveale~bY.~. .....==.

..- .

These facts imposed upon Soviet physicists their duty to continue
unceasingly the investigations of konosov and, with modern means, to
study the phenomenon of gravitational convection, and to extend the

-.

scope of the problems that it embraces.

3. l%rbernaland Internal Problems

Among all the possible cases of thermal ~avitational convection
the cases that have been subjected to the greatest engtneeribg and tech-
nical.investigation are those where the heater used for this purpose
had much smaller dimensions than those of the vessel ‘tiedto contain the

-1 fluid. The study of these cases was pr-rily conditionedby the prac-
tical danands of steam boiler plants. The combination of these condi-

. tions is included under the general concept of the “external problem of
.-L—.

. heat ’convection.“

The contrsry cases, where the Mmensions of the heater or the
cooler are comparable with the dimensions of the vessel conta~g the
fluid, are combined under the general concept of the “inte.rn+problem.”
Of these cases, the one subjected to the most detailed engineering S@
technical investigation is the case of the transfer of heat from one
solid body to another through a thin layer of fluid (ref. 5, p. 86), ad
from the wall of a pipe to the fluid moving within it (ref. 5, p. 87 and
ff.)

The technical character of these investigations is conditionedby
the aim that they pursue, namely, to give an over-all esthnate_o_fthe
quantity of heat transferred by the whole convective process rather than
going into the detafls of the motion of the fluid particles and the dis-
tribution of their temperatures. The sotice for these “tivestigatfbiikis
frequent and diversified tests, and the results are generalized by the
methods of the theory of similarity or theory of models.

With this engineering approqch to the phenomena of gravltat@@_
. “ convection, the physics-mathematical approach “is”of great significance.”

~ the latter approach, the hydrodynamic side of the process and the
———
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temperature distribution are studied in detail. The investigation is
conducted both by expertientil methods and by the mathematical devices .

of classical hydrodynamics. ●

The two most important experimental methods are the @lrodynamical
methods of recording the motion of light-scatteringparticles introduced
into the transparent fluid, and the optical tiethodsbased ~n the depend-
ence of the index of refraction of a transparent fl.tidon its density
(temperature, concentration). @ value of these methods depends on the
fact that with a correct test set-up neither the introduced particles
nor the light rays appreciably distort the phenomenon under investiga-
tion. Of lesser value are the thermal methods whose application Is
attended with the flow distorting behavior of the fixed thermometers in
the fluid (thermocouplesor resistance thermometers).

The mathematical devices of classical hytiodynsmics consist of
skillftil.methods for solving the complicated hydrodynamic eqpations of
heat convection. Of these, the first method used was thatiof Raleigh
which reduces to the finding of solutions that are periodic_in space
(ref. 6). This method was appliedby numerous investigators (ref. 7)
who were prharily guided by their aim to solve certain problems of
meteorology. There are also a few known successful attempts to inves-
tigate mathematically problems of we external type (e.g., ref. 8).
The difficulties, arising in the wthematical treatment for solving the n
problem, have attracted great mathematicians to whom special technical ,.
problems were foreign. For this reason, the analysis was usually *

limited to the mechanical phase of the ~hencmenon and only “inrare cases .

did it touch its thermal phase.

Thus, there arises the urgent need of investigating whether there
are any cases of an accurate solution of the equations of thermal con-
vection and the associated question of the methods of solving these
equations approximately. The investigation itself should got be limited
to the mechanical side of the problem but must alko give a clear account
of its thermal (or concentrational]aspect.

4. Practical Value of Chosen Case

An exact solution of the equations of thermal convection may be ob-
tained for a case that has great practical value. This is the case of
the thermal convection in a cylindrical vertical cavity heated from be-
low or on a side. The practical value of this case is determined by the
following circumstances:

(1) The heat which is propag@ed in the earth’s core f!romthe
pyrosphere to the surface passes at some places through cavities con-
taining liquids or gases. In these, a convective motion may arise so
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that a certain amount of heat is transferred upwards and is added to the

●-
heat transferred by the molecular thermal conductivity. The distribu-

. tion of the temperatures both within the cavity and in the surrounding
mines depends on the form and intensity of the convective motion. Prac-
tically the most important case of sucha cavity is a vertically drilled
well. Geologists often judge the distribution of the temperatures tith-
in the layers of the earth’s core by the distribution of the temperature
in the fluids filling such wells. However, the temperature of the fluid
in the well WY actually be determined not only by the temperature of
the neighboring layers but also by the convective motion in the fluid.
A consciously critical approach to the results of the measurements
sharpens the most hportant geothermal concepts (ref. 9).

(2) Many plants make use of chemical processes in liquids and gases
accompanied by changes of temperature or concentration. Reservoirs hav-
ing the form of tanks or columns are often used. Under certain condi-
tions convective phenomena may be excited in these containers either
spontaneously or by artificial means. Scmetimes these phenmnena are de-
sirable; at other times they are injurious. h any case, their conscious
control improves or accelerates the production.

N

d (3) In the casting of large articles the process of cooling the
casting does not occur instantly. The coo33ng of a casting”through the

m wall of the casting mold may bring about convection phenomena in the
casting. The convection complicates the process of cooling and solid-
ification and may serve as a cause of desirable or harmful forms of
shrinkage phenomena. A conscious control of the convective processes
opens up a way to reduce the spoilage @ casting. The characteristic
feature of convective processes here is their steady regime. Here also
belong the cases of the seasonal freezing of w&er tanks (of’certain
forms).

(4) Production installations often have the form of heated and
ventilated pits. The conditioning of the air in these chambers, intro-
duced for the purposes of professional hygiene, cannot be”correctly de-
signed if the phenomena of thermal convection and diffusion we not con-
sidered. lh this book the case of convection in a cylindrical channel
is investigated by physico-mathematical methods and contains brief con-
clusions regarding engineering and techgical applications.
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CHAETER2 .

~ EQUATIONS OF GRAVIT!4TIONALCONVECTION

1. Physical Sense of Different Terms of Each Eqm-tion

The process of gravitational convection is “described”bythe follow-
ing eqyations (ref. 1):

The first
equation. The
ascertained if

~+ (@z= -~+g(B9+P@ +VAX (2.1)

;+~xVO= AO (2.2)

6+IJXVC=IUW (2.3)

—

b +V(gy) = o (2.4) ;
.

of these equations was obtained from the Navier-Stokes
physical meaning of each term of this eqyation may be
the equation is multiplied by the mass of au element of

volume (“particle”) ;f the fluid P&; where it is useful.t-obear in
mind that in hydrodynamics, two methods of describing the motion of a
fluid are applied. The so-called Lagrange method studies &e paths of
the different individual particles of the fluid @ring the “entireproc-
ess. The Euler method considers the distributia of the velocities in
the entire volume of the fluid at a given instant-.

-.—

The term ~ represents the acceleration of a particle of volume
dz at a given point of space ata given instant. It may be called the
Ner acceleration. In connection with the fact that the expression
p+d~ enters in the equation of the second law of Newton, this term of
the Navier-Stokes equation may be called the Newtonian term;”

The expression [_fi]y= +W2 - [y[~]] in steady flow represents

the acceleration of a material particle of mass pd~ moving along a
given trajectory. It may be called the Lagrange acceleration. The ccon-

ponents ~ VI? and - [v[v%]] are analogous to the tangential and normal q--
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accelerations of the particle. The tangential component srises in the

.
nonuniform motion of the material particle along its path. The normal

. component arises in the motion of the point along a curvilinear path.
The term [_wl~, in particular, drops out b the case where all the par-
ticles of the fluid move rectilinearly, uniformly, smd along parallel
paths. The parallel requirement is added because, for exsmple, in a
radial spreading of an incompressible fluid from a single source the
motion of all the particles, although rectilinear, is not uniform: the
farther away tiom the source the less the velocity.

d
N+ In connection with the fact that the expression $ vzpd’r enters in

the Bernoulli hydrodynamic equation, the expression $ + may be called
the Bernoulli force.

The
part.

The
< pressure
d

entire left side of eqyation (2.1) may be called the inertia

expression -F’pdT represents the force of the hydrostatic
and may be called the Pascal force.

o IX the fluid does not everywhere have the same temperature e and
concentration C of the additive mixed with it, its density will-be dif- .

i ferent at vsrious points and will be given by p = W(1+ pe -1-plc)
where PO denotes the density of the solvent for .9= 0° and C = O,
P denotes the t~erature coefficient of the density and j31 denotes
the concentration coefficient of’the density. Thus the expression

(2.5)

represents the relative weight of a fluid particle d~. We do not con-
sider here the phenomena of thezmodiffusion. This expression may be
called the Archimedes force. It determines the gravitational character
of the phenomenon under consideration.

The expression vpdti~ represents the force of viscous friction
acting on the particle d’r. This expression may be called the
Poiseuille force.

J&cm this analysis it is seen that equation (2.1) represents a sum-
- ewression of a n~ber of el==t=y generally knownP@ical kws
referring to one grsm of fluid end

This equation is not entirely
Actually, the density of the fluid
the more complicated expression as

●

.

holds true for any particle of fluid.

accurate in the following respects.
in the Amhimedes force is @ven by
follows:

..
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Of this expression, equation (2.1} uses only the first

P

.

(2.6)

approximateon

R

(2.7) e

Moreover, bearing in mind that &3, plC are usually not Mge in
comparison with unity, P may be set equal to po.

The equation of heat conduction (2.2) is called the Fourier-
Kirchhoff eqyation. If this equation is multiplied by pcdz, the first
term represents the quantity of’heat expended per second for heating an
element of volume, and the second term represents the qyantity of heat
carried away by convection ficm this element of’wolume. On the right
side the expression cWpdr ~ Wd~ represents the quantity of heat
flowing up to an element of volume by heat conduction of tie surround-
ing particles of fluid. Thus, equation (2.2) expresses the law of con-
servation of energy. The coefficient x is called the coefficient of
temperature conductivity (thermal tiffusivity).

The equation of diffusion (2.3) is sometties called the I?ickequa-
tion and formalJy agrees with equation (2.2). The meaning of the dif-
ferent terms is analogous to the meanings of the correspondingterms of
equation (2.2). As a whole, equation (2.3) expresses the physical law
of the conservation of matter {admixture). The coefficient D is called
the diffusion coefficient.

The eqmtion (2.4) is called the continuity equation, and likewise
expresses the law of the conservation of matter (that of the basic fluid
or solvent instead of the admixtures).

Equations (2.2), (2.3), and (2.4) accurately express the elementary
physical laws they represent. Equations (2.1) to (2.4) are true both
for laminar and turbulent motions of the fluid.

2. Mathamtical Character of Equations

In equations (2.1) to (2.4), it is assumed that we are dealing with
,

a fluid whose physical properties, (i.e., the &arameters) are known.
.
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The unknowns in these equations are as follows: the velocity ~, the
pressure p, the temperature 9, snd the concentration C, altogether
four functions, one of which is vectorial. For their determination, we
have a precisely sufficient number of simultaneous equations, one of
which is vectorial. The arguments of these functions are the coordi-
nates and time. F@ations (2.1), (2.2), and (2.3) are partial differ-
ential equations of the second order (t&ough the Laplacian A); equa-
tion (2.4) is of the first order. Equations (2.1) to (2.4] are homo-
geneous; they do not contain free terms.

All of these equations are nonlinear. The nonlinearity is recog-
nized both in the structure af the equations themselves and in the non-
linear properties of the physical parameters of the fluid.

ActusXLy, all the parsneters of the fluid are functions of the tem-
perature. Generally, the viscosity v is most strongly dependent on
the temperature and also on the concentration of certain admixtures. To
a lesser degree, the parameters of the fluid generally depend on the
pressure p.

The nonlinear structure of the eqpations is reflectedby the follow-
ing terms: the Lagrange term (eq. (2.1)), and the convective terms
(eq. (2.2)) and (2.3), andtheentireeq. (2.4)). &ll nonlinear prop-

C erties of equations (2.1) to (2.4} are connected with their coordinate
terms; the terms depetig on the time (+ and 8) are linear.

Methods for solving nonlinear differential eqpations giving an
accurate solution in a finite nwber of operations are unknown. It is
this difficulty which explains why the physico-mathematical side of the
phenomenon has been relatively and moderately investigated.

One of the properties of a nonlinear homogeneous equation is that
if we have found two solutions of such equation by some method, the sum
of these solutions wild.not solve this equation. The fundamental prop-
erty of linear homogeneous equations is the converse of this property
which reflects the physical princi@e of superposition. Hence, it is
still necessary to defer attempts at an accurate solution of equations
(2.1) to (2.4) b their general and rigid form.

It is necessary, in the first place, to limit oneself to those
cases where it is possible to assume that the parameters of the fltid
either do not depend on the temperature and pressure or depend on th~
to such a sld@t degree that the general character of the phenanenon is
undisturbed by this dependence. This is called parametric linearization
of the eq=tions. In this case, the problemmsy be approximately solved
for the entire setup with improvements in the accuracy at different

. places of the setup in correspondence with the temperature and pressure
there obtained. ~ general, this restriction is not too troublesczne
(except ref 2).
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In the second place, it is necessary to investigate careflild.ythose

cases where it is possible to remove the nonlinearity from the structure
.

of the equations~ that is, to bring about their structure” linearization. .

The previously mentioned difficulties of solution of the nonlinear
eqmtions led to the

Y
rsmetrical linearization of equation (2.4) as

early as 1903 (ref. 3 . It was established that, within the range of
the fundamental properties of convective phenomena, it is possible to
assume O in the systems of (2.1) to (2.4) everywhere except for
the Arc&e;ean term in equation (2.1). As a result, equation (2.4)
becomes

and assumes the form

Vv=o (2.8)

As mentioned previous~, the structural linearization of eqyation
(2.1] is brought about when the Lagrange acceleration is equal to zero
and the paths of the fluid particles (the “lines of flow”) form a par-
allel bundle. If we take the z-axis of a Cartesian system of coordin-
ates pmMlel to this bundle, we have

v= Vz = V(x,y)1
‘x =0

‘Y =
o

%=0

(2.9)

Under the condition of the structural linearization of equation
(2.1), equations (2.2)
the z-component of the
stant, that is,

and (2.3) may be “structurallylinearized” ifl
temperature and concentration gradients axe con-

(2.10)

Experience shows (ch. 10), that this is the typical case.
.
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●
33 view of the fact that the majority of the tests have been con-

ducted with heat convection, and by assuming that in industry also heat
problas are more important than those of diffusion, and also by taking
into account the synmetry of the temperature and diffusion in the equa-
tions, further study will consider only temperature. Wherever ne~~ssary,
the diffusion problems may be investigated along the same pattern. The
phenomena of thermodiffusive convection require independent investigation.
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CHAFTER 3

TWNDAMENTAL”(LWIZED) EQUATIONS OF

GRAVITATIONAL CONVICTION

1. Form of “Fun&mental” Equations

Bearing in mind the parametric and structural linearization of the
initial equtions carried out in the preceding paragraphs and confining
ourselves to thermal convection we obtain, for the steady state, the fol-
lowing system of linear homogeneous eqyations

o
lx=--
P P

z + g cos c@3 + VAV (3.1) .

0 1X a=--
+

+-g sin a&3
P

(3.2)

AV .X&jl (3.3)

2=0 (3.4}

Account was taken of relation (2.9) in virtue of which all these
equations are scalar and there has been put

(3.5)

The YZ plane has been taken through the gravitational acceleration
vector g which forms the angle a (fig. 1) with the Z-axis. It iS un-
derstood that equations (3.1) to (3.4) describe only the laminar motion
of the fluid.

.
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2. Remarks on the Expertiental and Mathematical Significsmce

.

.

of “Fundamental” Equations

Much effort has been expended in proving experimentally the admissi-
bility of the basic assumptions which underlie the setting up of a sys-”
temofeqwtions (3.1) to (3.4](chs. 10and 13}. As aresul.t, it has
been found that these assumptions are actually typical for a wide range
of e~erimentslly produced thermal convection phenmena. At the same
the, the linearity (and homogeneity) of these equations makes possible
their elanentsry solution in closed Yorm. We thus find, in this sytem
of equations, the key to the detailed physico-mathematical investigation
of a certain class of experimentally producible phenomena. For this rea-
son, the system (3.1) to (3.4), its solutions, and those conditions which
determine the occurrence of this case ~ be termed “fundamental” in the
following paragraphs.

This term is fuxther Justifiedby the following considerations. The
degree of accuracy of an experimental check of a~ theoretical assum-
ptionscan never be considered perfect. Ih any experiment small devia-
tions will always exist frcm the ideal case that is descri~y the
equations. It is possible to distinguish a wide group of experimentally
produced phenomena in which the ideal situation will form the principal
and essmtial nucleus while the preciously mentioned small phenomena
till play a negligibly small pax-t. It is this group which serves as the
proof of the correctness of the basic asswptions. But, in addition,
a second still wider group of phenomena can be distinguished in which
these -11 deviations till no longer be negligible ow5ng to their in-
sufficient smallness. These, however, can be mathatical.ly taken into
account as nonlinear corrections to the solution of the Mearized
system (3.1) to (3.4).

Thus, eqyations (3.1) to (3.4) not only play an independent psrt in,
giving an exact solution of the problems of expertientally produced
phenmnena but also play the very important auxiliary part of providing
a basis for the mathematical solution of not strictly linear problcmm
by.the method of successive appr~tions (ch. 15).

3. Case of Vertical Channel

Bearing in mind that the experimental verification of those cases
for which sin u is not small encounters great difficulties (ch. 17],
we assume that the channel is vertical, the Z-axis collinear tith the
acceleration of gravity vector g, and the angle u = SC. Then

(3.6)
cosa=- J1
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We likewise assume, for the present, that appz = O (ch. 5, sec. 4).
;

The scalar equations (3.1) to (3.4) then become

Eliminating
Laplace operator

-g~6+vAv=0 (3.7) -

Av -XA(3.O
.

(3.8) -

trom these equations either 8 or v by applying the
to one equation, we obtain quite identical equations

in v or (3,for exsnple:
——

gmv - XVMV = O

or

Mv - k%=O (3.9)

where

(3.10)

The process of elimination was Tossible because of ti_ecommutative.ty
of the operations of multiplication and of formbg the Laplacian. For
emaple, in eliminating 8, it was assumed that ?

@M =A(g~8) (3.11)

The result does not depend”on ~ethe~ the functi-6nof-the coordinates e -
-.

is multiplied by the constant number g~, “andthen frti ~ product a
new function, the Laplaciti A; is”formed, or conversely,‘~ether the
Laplacian of 6 is formed first and the result is then multiplied by
the constant number gp. Equation (3.9) is a linear homogeneous incom-
plete biharmonic equation (refs. 1 and 2) with constant coefficients
(within the assumed limits). By definition, the symbols A has the
follo~ meaning:

Mv = A(Av) = div grad WV grad v

8%+2 a%
=V(v{(vv)})=v%=—— — — ‘~ (3.12)

3X4 -- ax2ay2 ‘b

From the system (3.7) we obtain .-

—
(3.13)

If the system (3.7) to (3.8) is solved for 0, we obtain, from (3.8), .

:Aev=- (3.14)

.
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Formation of Components of HSrmonic Equations

(3.9) is customarily solved by the following symbol method
(ref. 3, p. 197). We assume

O = (A - P)(A + k2)v = My - ~(h) +A(k2v] - k% = A& - k%

Because of

Hence, the

●

the commutative property

k2{Av) =

repeated equation (3.15)

A(k2v)

is true.
be equal to zero only if at l&ast one of the

~ AV1 = k2vl

8
m (A+k2)v2 =Av2 +$V21
8

AV2 = - k2v2

(3.15)

(3.16)

But expressions (3.15] can
folloWng eqyations is true:

=

1

0

(3.17}

=

}

o

(3.18)

Since eqution (3.9) is linear (and hcmnogeneous),its most general solu-
tion tillbe any linear combination of solutions of equations (3.17) and
(3.18)(satisfiingthe boundary conditions discussed in the following
exsmple):

There is then obtained
namely,

e - Az =e1+e2=*

v= V1 + V2 = V{x,y)

frcnneqyations (3.5) and

(Av1+Av2} =* (k2v~ -

Since equations (3.17) and (3.18] are each

(3.19}

(3.13) e = e(xjy) -i-AZ)

~ (V1 - V2]k2v2) = gP

(3.20)

of the second order,
there enter altogether, in the final solution, four arbitrary constants
determined fhm the boundary conditions.

.

.
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5. General Properties of Solutions of “Fundamental”

Equations of Gravitational Convection

Even before discussing the question of the boundary conditions, a
number of important general conclusions can be drawn from -theform of
the solutions (3.19) and (3.20).

(1) The total volume of the fluid flowing upward in We plane
z = O through the area S bouzidedby the contour
equal to (fig. 2)

L intim= t iS

1

-J
s

(3.21)

where the Ostrogradsky-Greentheorem was used. The
differentiation along the nozmal to the contour L,

n

sign ~/& denotes
dZ denotes the

differential arc of the contour, and
)

denotes integration over the
closed contour.

(2) The total flow of heat due to molecular “thermalconductivity
(there is no other convective-heat conduction in the direction perpen-
dicular to the z-axis} through the lateral surface of a cylinder of
height h with base S, bounded by the contour L, over a tfie t is
equal to —

r

.

(3.22)

.

.
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If we assume that the motion of the fluid is directed by the walls
of the vertical cylin&ical channel having the cross section S, then
it is seen from equation (3.22) that the flow of heat passing from the
channel walls into the fluid, under the assumptions made, is propor-
tional to the total quantity of fluid flowing through the section of
the channel. If at certain points of the cross section the fluid flows
upward and at other points downward, then it may be found that the
total q~tity of fluid passing through will be equal to zero (“closed”
channel, pure natural convection). In this case, at certain points of
the perimeter of the channel walls the heat may pass frm the walls to
the fluid and at other points from the fluid to the walls, but the
total general flow of heat will likewise be eqyal to zero. With su& a
natural convective flow having a constant gradient and constant velocity
over the height (but variable over the cross section), the fluid does
not heat or cool all the channel walls.

If a certain distance along the channel an over-all transfer of
heat occurs from the fluid to the walls or conversely, then one of the
assumptions ude drops out. For em.mple, it is possible that an arti-
ficial pumping of the fluid occurs through the charnel, and the actual
motion of the fluid then represents the superposition of forced and
free convection (ch. 5, sec. 4]. tithis case, equations (3.1) to (3.4)
cease to be linear. Or, it may be that an axial gradient exists so

a that av~z # O (i.e., the transverse components of the velocity are
not zero (eq. (2.9)). Ih this case, the linear description of the proc-
ess is an inaccurate approxtion, in same cases, admissible (ch. 10),

k and in other cases requiring essential corrections (ch. 15).

(3) The total flow of heat carried upward by convection in time t
through the area S in the plane z = O is givenby

Qt =

q

V-tpcedxdy 1

0 I
(3.23)

= pctvk2 (V1 + V2)(V1 - V2)W dy
!3P

s

Cq
= pvct ‘~gpx (< - f)dx dy

—
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To this convective heat flow it is necessary to.add the aolecular heat
flow

~t = - MS-t (3.24) -

6. Form of Solution of Biharmonic Equation

in Cylindrical Function8

The general solution of the biharmonic equations (3.9), (3.15),
(3.17), and (3.18) has been worked out in greatdetail in terms of cyl-
indrical functions. If we set

x= r cos q7
Y= r sin q

1

r2=x2+y2

tgq=$

(3.25)

then (ref. 3, p. 200 and followi~) *

Al a%q = $vl av~ a%l
Avl = —-l—— — +;x=+rz Ax—= k2vl (3.26) “

8X2 ay2 &2 ap2

Setting

we obtain mom equation (3.26):

(3.27)

(3.28)

A solution of the last (linear) equation is given by any cylindrical
function Fn (or a linear combination of them) of order n of the argu-
ment (iti) satis~ing the boundary conditions, which will be considered
later in this report. The solution of equation (3.26) ti~ then be

‘1 = 2 Fn(ikr)cos(ncp+ Tl)

Il=o

(3.29) ,

.
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In the light of the last transformation it is useful for what follows to
give the following simplified characterization of cylindrical functions.

. A cylindrical function is a function of the coordinates r and q, for
which the operation A, by eqmtion (3.26), is equivalent to multiplica-
tion by kz. Cylindrical functions have been we~ tabulated (refs. 4 to
6).

The choice of the cylindrical functions thaselves and their coef-
ficients in Iinesr combinations must be made by considerhg the boundary
conditions.

In contrast to many other cases of the application of cylindrical
functions for the solution of physical problems, in this case all.tic-
tions entering eqmtion (3.29) are characterized by the same value of
the parameter k. It is determined in accordance with e-ion (3.10)
by certain unitary parameters of the same fluid in which there exists
a single vertical taperature gradient A.

By analogy with eq=tions (3.26}, (3.28), and (3.29) for eqwtion
(3.18), we find in place of equation (3.29)

‘2 =
a’

[Fn(- kr) X cos(nq + Y2~
r

n=

(3.30)

Considering equation (3.20), we obtain for the temperature

0
vk2

-Az=—
~[ 1

Fn(&r)cos(nq +Tl) - Fn(- ti]cos(nq +T2) (3-31)
@

It is useful to have in view
the transition from the higher to
functions, which are particularly

the fallowing formula which permits
the lower orders of the cylindrical
well tabulated, so that

F(x) =~Fn-~(x) -Fn-2(x)n. (3.32)

Of these particu3a.r@ well tabulated functions, it is convenient to use
the Bessel functions Jn and the Neumsan functions Nn.
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CH.WI’ER4

SOLUTION OF PROBLEW OF THERMAL

CON’KECTION

GRAVITATIONAL

—

#.
ccl
m
P

1. General Boundary Conditions

For all thermal problas investigated, referring to %e convection
of a fluid within a cylindrical”channel, the following _ boundary .
conditions are characteristic:

(1) Within the channel of cross section S, bounded by the contour
L and near the surface z = 0, the velocities and temperatures are fi-
nite, continuous and single-valuedwith the required number of
derivatives. *

(2) The total quantity is given of fluid V passing through the
channel. For example, in the case of free convection alone, it is equal .

to zero (“closed” channel).

At the channel wall, the velocity of the adhering boundary
fluid is equal to zero:

‘L
=0 (4.1)

(4) T%e temperature is continuous within the adhering boundsry
layer (does not have any jump)

(4.2)

(5) The flow of heat is continuous within the adhering boundary
layer-(ioes not originate tiom any
reaction nor other accumulation or

()@L=

chtical exsothermal or endothermal
generation of heat):

(4.3)
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2. Special Boundary Conditions

TO the general boundary conditions there must be added, in each
case, special boundary conditions of the heat distribution in the mass
surrounding the channel or in the channel waJl, that is, scme infom--
tion must be given relative to Oe.

These boundary conditions are generally divided tito two classes:
namely, nonhomogeneous and homogeneous (ref. 1). Two forms of the typi-

$ cal nonhcnnogeneousconditions in the heat transfer are given as follows:
Nd

(1) The temperature OL is given at any point of the contour L.
This is the simplest boundary condition that may be dirkctly substituted
in the solution (eq. (4.7)), and that gives the required result. These
conditions, in their turn, must satisfy the following initial conditiofi:
along each generatrix (parallel to the Z-axis) the temperature must vary
according to the linear law (eq. (3.5)). Hence, the contour of the L
section is involved and not the entire surface of the channel wall. If
in particular cases this requirement of the houndsry condition is not
observed, it is impossible to use the “fundamerital”linearized equtions
for the solution of these cases due to inequalities, (eq. (2.9)),

d

VX+o

(2) The heat flow A(ae/&)L is given entering the fltidfiom the

surrounding mass. ‘Ibiscondition can likewise be substituted in the
solution and will give the required answer after more or less compli-
cated computations. This boundary condition must satisfy the conse-
quence frcm the initial conditions, namely formula (3.22), otherwise
equation (2.9) will again be violated and the phenomenon till be
unsteady.

The most typical homogeneous boundary condition is the proportion-
ality between the heat flow and the temperature at each point of the
contour
point in
rounting

In order

L; the coefficient of proporti&ality varying f%m point to
correspondence with the special thermal properties of the sur-
mass and the geometrical configuration of the contour L:

.—

a9e

()~zfa— = f(z) =ee fl(r,q) (4.4)

L

to be able to use the “fun@uental” equations, it is necessary
that equation (2.9) be observed, that is, that the functions f and fl
are independent of the coordinate z.
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The case considered most is the one for...,whichthe thermal properties
of the surroundingmass are characterizedby the following extremely gen-
eral assumption: at finite distancei from the channel there are neither .
heat sources nor sinks in the surrounding mass:

Aee=o (4.5)

This assumption does not exclude the presence of any kind of’thermal
phenomena in the surrounding mass. For exsmpleJ the changel fluid serves g
as a source of the local thermal phencmena in the channel region in cor-
respondence with formula (3.22).

aJ
Moreover, the surrounding region per- P

mits the existence of heat flows caused by the”presence of “infinitely”
removed sources and sinks. The latter must be at such a distance fimm
the channel that the gradients they produce in the surrounding mass (in
the absence of the channel) do not appreciably depend on the coordinates
in the immediate vicinity of the channel. Inp&rticular, formula (3.5)
represents a reflection of one of these distributions of the thermal
field in the surrounding mass.

—

The application of homogeneous boundary co~itions re~uces the
problem of the solution of eqyations (3.9), (3.20), and the ones to
follow to the problem of characteristic values, examples of which will

.

be given later.
s

In certain cases boundary conditions of the different classes may
be combined with each other. The solution of a linear differential
equation simultaneously satis~ing certain boundary condit&ons is equal .

to the sum of solutions each of which individWi& satisfies each class
and form of boundary condition&. However, a physical sense will be
possessed only by those solutions which correspond to the same values
of the parameters A and k. “This characteristic of the problem in-
vestigated differs flxxnnumerous popular problems connected with the in-
vestigation of the biharmonic equation, and the phenomena of heat
transfer.

3. Basis af Solution Scheme

With account taken of the boundary conditions, the process of solu-
tion of the concrete problem can be indicated in the following manner.
In the surrounding mass in the plane z = O, the contour L(r,q) iS
given of the section of the channel (fig. 3). We divide the contour
into elements dZ, the center of each element having the coordinates r
and q. Using.e~ressions (3.29) and (3.31) and.the genera~ and special
boundary conditions and haying s~e value of; A corresponding to k, we
write the foJloting equations for each of the elements:
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.
%=0

~tiNn(@cos(w + Tu ) +

bnlJn(- kr)co$(np + T=21) +

btiNn(- h)cos(n~ + Tfi2)] (4.6)

bmJn(- h}cos(~ + Yn2~) -

bn2Nn(- kr)cos(nq + Tti2)] (4.7)

(4.8)

If the boundary conditions are not homogeneous, the left sides of
equations (4.7) and (4.8) are given. If, however, the boundary condi-

tions are homogeneous; in particular, if equation (4.5) holds, then in-
stead of eqyations (4.7) and (4.8)(or in addition to them if the bound-
ary conditions are mixed) the external problem equation (4.5) must be
solved. The solution of this external problem will be in the cylindri-
cal coordinates (eq. (3.25)) expressions of the form

n=l

The significance of the e~ression lZJn

y-d) + .Wr-%os(w +r~)l

(4.9)

r/R will be discussed later

(Ch. s; sec. 4); for the present> we ass~e th.t E = o“

.

.

I
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In this way, there is obtained
to (4.9], in the unknown constants

The
dZ

a system of sets of equations (4.6}

—
7--&2T&> ““”) l-~> r~)”’”

%
nuniberof sets of these equations is equal to the nuniberof elements o
divided by the contour L of the cross section. F

If it is found that these eqpations are simultaneous, the chosen
. value of k is suitable. In the contrary case, it is necessary to

choose a new value of k, that is, of the temperature gradient A, and
to repeat the operation of solving the equations.

In principle, even an infinitely large number of elements of the
contour L can be treated with a finite degree of accuracy for each
value of the parameter k by a finite number of mathematical operations
(ref. 2). Hence, in any case the existence of a solution need not occa-
sion any doubts.

u

4. Method of Solution

In general, however, the solution accordi.pgto the preceding scheme
is very laborious. Hence, only those general considerations have signif-
icance which permit: (1) the separation of the @pical cases for which
the number of equations is essentially reduced and, (2) those cases
which may serve as guides rendering the investigation of associated vari-
ants superfluous or essentially facilitating this investigation. The
most important of these general considerations is the consideration of
synmetry. In general, these considerations lead to a rational locating
of the origin of coordinates sad, also, to assigning a direction to,the
zero azimuth in order to eliminate, as far as possible, the.azimuthal

Later on in this report, examples of the app~cation ~ these con-
siderations will.be given.

.
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i-lcclN+
STEADY CONW3CTION IN

CHAFTER 5

VERTICAL CHANNEL OF ROUND SECTION

1. Diametral Antisymmetry of Free Convective Flow

For a channel of round cross section, on the basis of equations
(3.19), (3.29), (3.30), and the general boundary condition 1, it is
convenient to write:

[

Jo(ikr)

1

J@)
V=v

o--mm+

[

J2(ikr)

1

J2(kr}

‘2 w-p cos2q +””-

(5.1)

this expression lies in the circumstance that the
3 (eq. (4.1)) is automatically satisfied for r = R

The convenience of
boundary condition
at the channel wa~. In this expression the Neumann functions are ab-
sent because of boundary condition 1, since these functions go to in-
finity at the origin when r ~ O. The direction of the XZ-plane from
which the azimuthal angle (p is calculated is chosen from considera-
tions of symmetry parallel to the external gradient. As special bound-
ary conditions we assme, as in eqyation (4.5),

By equation (4.9), these conditions are rewritten as follows:

‘=Az+(-+)cOs’

(5.2)

(5.3)
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where D denotes an umknown coefficient. By equations (4.7) and (5.1)
for the temperature within the channel, we obtain:

Az+$
{[

Jo(ikr)

1[

Jo(b) Jl(ila)

‘o -+W “1 m+

While in eqyation (5.1) it is still possible to substitu~~ Neumann func-
tions so that, by mutual compensation, they do not give infinity when
r + 0, they will necessarily, because of the sign chaage h the last
eqyation, give infinity when r + O. For this reason, the coefficient
of these functions in solution (5.1} must be identically e@al to zero
(i.e., these functions must be excluded from the solution).

In correspondence with the general boundary conditiorisequations
(4.2) and (4.3) and substituting equations (5.3) and (5.4), we obtain
for r=R

(5.6)

‘0 = ‘2 = ... = () (5.7)

Eliminating the coefficient D from eqpations (5.5) and (5.6), we
obtain

[

hvk2vl i~JO(ikR)

1

kRJ@R) - ,

Aegp ~ + --
.BR+:=m-2 ~ (5.8)

or —

{[

V(’R)2V1 ~ ikRJo(i@ kRJo(l@

1}
BR3= gfj ~ ,Jl(,~) ‘--1 ‘1 (5.9)

.

“
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.
1!% this equation it is seen that in the case under considemtion,

the laminar motion of the fluid (expressed by its “amplitude” VI) is
. uniquely determined by the following conditions: by the parameters of

the fluid and thermal conductivity of the surrounding mass ~, by the
diameter of the channel 2R, and by the regime of its operation- the
transverse gradient B and the longitudinal gradient A (through the
parameter k).

Because of this motion of the fluid, it till transfer upward by
convection a q~tity of heat determined by equation (3.23). If the
eqution is rewritten to apply to the given concrete case,
ing eqyation is obtained:

the foKl_ow-

Q=‘cv~J#Jtyal’-Ha’}cos’-d’
=-*{[*]’+[wl’+’Ew-*l}

(5.10]

Eliminating vl from equations (5.9) and (5.10] gives equations that
permit expressing this heat directly in temns of the fluid parameters
and the thermal conductitity of the surrounding mass, the channel di-
smeter, and the channel operating regime. This elimination gives:

‘3 -’%’”1”) ‘% ’2(’)=’ ‘% ‘5-U)()

‘3mx%=~F’(E’“2(”“w=) ““u)
where the first factor on the left side is det_ed by the channel
radius, the second by the fluid parameters, while the third conne”ctsthe
transverse temperature gradient B with the heat quantity Q trans-
ported by convection. @ the right side we have a linear $’unctionof
the ratio of the heat conductivity of the fluid A to the heat conduc-
tivity of the surrounding mass &; Fl(~} and F2(E) are coefficients of

the function (&) and
perature @_ terms of a

.

.

were determined by the axial gradient of the tem-
nondimensional parameter such as eqyation (3.10):

~4.=(@4=~XAXR4
,.

(5.13}
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.

.

It is to be noted that for a considerable distance about the point
E = 0, the dependence of 1’1,I?2,G, and H on g4 is very nearly
linear.

.
By analyzing the preceding computations, itmay be established that

the case discussed corresponded to the mixed special boundary conditions.
In expression (5.5), the term RR represents the nonhomogeneous part of .

these conditions, and the term D/R represents their homogeneous part.
For this reason, the coefficient D was excluded from further expres-
sions and the coefficient B determined the final result–of the
computations.

Therefore, the purely homogeneous case, when B = 0, is of special
interest. Rrom equation (5.9) it is then seen that the expression in
braces acquires the meaning of a fundamental equation for determining
the “characteristicvalues” of the argument I&l= ~.

[

Jo(i~} J.q=2 (+E -+~ (5.15)

The value kR = 0, that is, A = O for the condition B = b> corresponds
to the condition of complete isothermy and in steady state processes does
not represent convective flow of the fluid.

The characteristic values of g of the transcendental equation
(5.15) depend on the relation of the thermal conductivity of the fluid
and of the surrounding mass as shown in table II and figure 4.

--

.
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The azhuth q in this case drops
tions. It is, mathematically speaking,

- described in chapter 10, section 5.

33

out entirely ticm the ccmputa-
arbitrary. The experiment is

It is important to note that the amplitude of the velocity vl in
this case is determined by the quantity of heat transferred by convec-
tion, that is, by equation (5.10) and not by equation-(5.9) from which
it drops out because of equation (5.15). Thus, within the range of the
linearized treatment, it may be shown that the tivestigated form of con-
vective flow can transfer arbitrarily large gyantities of heat upward.
As a matter of fact, for large velocities of fluid motion, we should ex-
pect some phenmena similar to turbulence. Due to this fact, the Mnear
treatment beccnnesinsufficient. Actually, both the velocities of the
laminar flow and the quantity of heat transferredby convection are lim-
ited (ch. 10, sec. 3).

2. Criterional Significance of Convection Parmeter

4 follows frcm its criterionalThe structure of the parameter 3
signi.fic-ce in the sense of the theory of similarity:

In .—.

(5.16)

..
The Grashof number Gr and the Frandtl ntier Pr in this combination
(product] are the usual criteria of the theo~ of similarity when it iS
a question of the transfer of heat fim solid bodies to fluids or con-
versely. Tn such cases this product plays the role as an argmnent and
the Nusselt number as a function (ref. 1).

.
~ this case, the Nusselt number is zero because there is no over-

all transfer of heat from the channel wall, the heat being transmitted
upward by convection from one part of the fluid to another. In this
heat transfer some significance may be ascribed to the Nusselt number,
in particular, by denoting this nwber as the ratio of the heat trans-
ferred fkom the lower to &e upper ~ t of the liquid by convection plus
molec~” therml conductivity, to the heat transfei only by molecular
conductivity according to equations (3.23), (3.24), and (5.10)

QN!J**=l+— (5.17)
%

However, since in the linear treatient the “amplitude” of the velocity
vl is obtained as arbitrary, and the value of Q is likewise arbitrmy,

me according to equation (5 17) beccmes indeterminate.
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On the other hand, the criterion g4 also acquires a-special,
double significance. In the first place, it is the criterion of stabil-
ity of the fluid;“andsecondly, it is simultaneously the criterion of
stability of the fluid motion. This subject will be discussed in more
detail in chapter 10, sections 1 and 3. Few other examples are known of
such coincidence in one numerical value of different meaning contents of
this criterion.

In the absence of an axial gradient, for A=O (i.e., for ~ = 0),
the transverse temperature gradient B uniquely determines the quantity
of heat transferred upward by convection. Letting ~ +0 in expressions
(5.1) and (5.4), we obtain

‘ere ’11
quantity of

(5.18)

.

represents a new limiting “smplitude” of the process. The

heat transferred is determinedly expression (3.23)

R 2YC

J~ 1axB2
Q=PC ver&dp=~x Vx 1 XR6? (5.19)

-+~
A Ae

00

Note that the fluid motion in this case recalls the Poiseuille case
in many respects, and the temperature distributing is the sme as it
would be in a solid body.

The case discussed here is diametrally antisymmetricalabout the
Y-axis, both with respect to the velocities and the temperatures, as
seen from eqmtions (5.1), (5.4), and (5.7). Hence, the total-volume
flow V of the fluid and the-over-all heat interchange of the fluid
with the channel walls, according to equation (3.22), is equal to zero,
the duct is “closed”; we are dealing exclusively with &ee convection.

As an
peratures,
h=~ as
meridional

example, figure 5 shows.the distribution of velocities, tem-
and heat flows in a circular channel for the case where
a function of the distance tiom the channel axis (i.e., in a
section). The line of temperatures is prolonged into the

.

.

.
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surrounding mass outside the channel boundary. l?igme.6 shows the dis-
tribution of the ssme magnitudes in the form of isolineg in the plane
where z =.O; the isotherms again being prolonged into the surrounding.
mass. Figure 7 shows the ssme curves as figure 5 to a larger arbitrary
scale.

3. Thermal Role of Pipe Walls3

If the phenomenon under investigation is observed in a channel
which is not hilled in a dense block but in a pipe inserted in a blo@s,
the value of h entering formula (5.6) and the others will depend on
the thermal conductivity of the material of the pipe ~, of the block

>, as well as on the pipe radii, the internal radius R, the external

radius R1~ and on the t=perature gradient B2 in the surrounding mass.
Let us find to what eq..valent value of the thermal conductivity he

the thermal conductivity of the pipe and also the equivalent value of
the gradient B correspond.

$

s By considering the fact that for the case

m are assuned to be either in the pipe or in the

4
Q &~ =~~.Ne.O

we find, wtth shnilarity to eqution (5.3).

of a pipe no heat
smrounding mass,

e2=@+$cosq+Az.J

sources
then

(5.20) .

(5.21)

The temperatures inside the pipe 61 and outside the pipe 82 join

each other at the outer boundary of the pipe at the radius R1 without ‘-”” ‘“”
fluctuations in the temperature ahd thermal flow .——.._

(5.22)

%his section utilizes data from the work of V. V. Slavnov.
.
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At the inner surface of the pipe the temperature of its material
unites with the fluid temperature in such a nmnner as tho&h a channel
were drilled in a dense mass with the temperature conductivity Xe and
the channel temperature @e:

ee=-
D1

BIR +~=-BR+; 1
,

(5.23)

There is thus obtained a system of four simultaneous eqpatiow connect-
ing the following Kl magnitudes:

D ‘1 ‘2

R Rl

of these, R, Rl, Xl, 12j and B2 are given; the unknowns ‘&ce B and—.

Ae. It may thus appear that the four equations are not sufficient for

eliminating the excess unhowns Bl) D, Dl, and D2. The structure of

equations (5.22) md (5.23} is such, however, that it is possible to
proceed without these eliminations.

In fact, eliminating the expressions D2A2/R; and DAe/R2 from

(5.24)

eqyations (5.22) and (5.23), respectively, we obtain

B1(AI +~2) -j(A2 -Al)

“1

- 2A2B2 = O

‘1 (~ - Al) - 2AeB = OB1(X 1+&) ‘—
R2

Now through elimination of the expression
‘1

X(A2 - ll)(~e - h) .
~.

mm the latter equatiou, we obtain 1

.
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(5.25)

Whatever the values ascribed to the magnitude Bl, equation (5.25) re-
mains valid if we assume

(5.26)

then, the final expressions are obtained
\-

By using these equations, tests conducted in pipes may be compared
with the theory worked out for a channel ti a dense homogeneous block.
We remark again that the case considered.here is that of diametrally
antisymnetrical convection.

4. Superposition of Forced and l!keeThermal Convection

In contrast to the previously discussed case, we shall now consider
the case where the fluid in an open channel is drawn by an outside pmnp.
In this case we are justified in expecting the superposition of forced
and free convection. ~ equation (3.1) an essential part is then played
by the pressure produced by the prep; and for the vertical channel, we
must write in place of equation (3.7)

.

- Q
.—

$Pz
-g~O+vAv=O (5.28)

.—

I
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Equation (3.8) remains valid

Av = X&’ ; v= &M

Eliminating v from these equations, we get

Me ESm A.--- e.——— O
3pvx z

.

(5.29) -

(5.30)

The preceding incomplete biharmonic equation is linear, but nonhomogene-
ous by the assumptions made; the right side of the equation is not zero.
Guided by the usual rules we first seek a solution of the homogeneous
equation coinciding in foti with equation (3.9):

AM() - k4@o = O (5.31)

By bearing in4mind that for a vertical.channel the condition
appx = appys O, is observed, then, by analogy with equation (3.19)
and in correspondence with equation (3.20), and by making use of the
general rules of solving nonhomogeneous equations, we obtain the followi-
ng conditions:

‘o = el + e2; e =eo+Az=6’o--~X~
P@

(5.32)

whence
—

a3- Pd Az;
1=- P z pg~ AZ2=-_

z
(5.33)

Integration of equation (5.33) provides the assmnption that the pressure
produced by the action of the pump drops to zero precisely in the plane
z = 0, or in other words, that the XY plane passes through that sec-
tion of the channel which is considered the origin of the pressure
computation.

In cmparing this result with the case discussed previously we note
that this case does not introduce any new terms in the solution of the
equations.

The forced pumping of the fluid does not show up in the pressure or
in new.terms in the solutions, but only in the added quantity of heat
which the pmped fluid transmits to the walls, and only in the flow rate
of the pumped fluid (according to equation (3.22)). In particular, the

4
Due to the fact that all the vectors in equation (3.1) are

collinear.

.—
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Poiseuille case corresponds to A+O and k+o, anditisol)tai~dif

the following formulas employ a series expansion of Bessel functions,

which consider only the first two terms.

JO(U)UW+ 1 - ~u2 (5.34)
.—

Using equations (5.32) and (3.14] as well as equation (3.10), we ob-
tain the same form of solution, name~,

[

Jo(ikr) Jo(@

1[

Jl(ikr)

1

J1(@
v “o---m ‘Vim-mwcosq+ ‘

[

J2(ikr) J2(@

1‘2 v-~
cos2q+ ... (5.35)

@

{[

JO(*) Jo(b)

1[

Jl(ib)

1

Jl(kc)
e =Az-—

f@ ‘o -+W ‘“l m+”- Cosq+

[

J2(ikr)
J.(@]cos2q+ ..]

‘2 -’w
(5.36)

As special boundary conditions, which now are more exactly specified,
equation (4.9) is used

—

ee = Az I-
()
-Br + ~ cosq+Eln~+Oeo (5.37)

on the basis of the general boundary conditions (eqs. (4.2) and (4.3)))
we write

@(vo+vl cos Q+v2cos2T +...) - ._~= Az+2gP

()=Az+ -l?R+~ cos p + eeo

Avk3

[

iJl(il@ Jl(l@

1[

Jo(ikR)

T ‘0 -’w “1 -w+

J@R) 1qm-2Co’q=‘e[(-,‘$)CO.,+$

(5.38)

(5.39)
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Eliminating D from the preceding eqwtion, we again obt~in equation
(5.8); instead of equation (5.7), only V2 = O ‘-remains,~Moreover, there
is found

vk2vo
2 — = eeo

g~
(5.40)

[

eoe iJ@R) J1(l@

*XT 1W+WO=:
(5.41)

The total volume of fluid pumped upward thro~h the channel, according
to equations (3.21) and (5.41), is computed to be

*

R

H

2s
T

J[

R JO(ikr)

1

J@} r ~
-=
t

vrdrdcp=2mvo
w-m

00 0

2YCVOR

[

2 iJ1(il&)

1

J1(l@ 2tiAeE
=-—

m p+=j=~
—. (5.42)

On the basis of equation (3.22), the physical sense of the magnitude E
.

is determined fYom equation (4.9).

-2tiAehE= Ql (5.43) -

namely, this magnitude in a certain scale is equal to the heat flow
passing through from the channel walls into the fluid over a distance of
1 centimeter of the channel height. There is thus establi~hed a rela-
tion between Ql, E, and A, (i.e., k]. The term containing V. de-

scribes both the &ree and forced part of the convective fl~w, but it is
equal to zero in the absence of forcedconvection. The ph&omenon de-
scribed by this term possesses a strict axial symmetry.

In the absence of a transverse gradient, B = O, either vl = O or

the considerations leading to equation (5.15) are valid. The term con-
taining vl describes only the free part of the convective process.

It is again necessary to emphasize that the magnitude kR in all
terms of equations (5.35), (5.36) and so forth has the same value.

As an example, figure 8 chows the results of a computation of sev-
eral cases for the condition of absence of a horizontal gradient VI = O

and B = O. On the axis of abscissa is laid off the value of Vm to an
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arbitrary scale and on the axis of ordinates the parameter (kR)4, pro-
portional to the vertical gradient A, is laid off. The figure shows

. several poiuts in these coordinates and together with these shows the
corresponding velocity distributions (solid curves) and temperatures
(dotted curves) along the channel diameter. ~ equivalent Poiseuille
parabola is drawn on each sketch. The coordinates of the selected
points and some numerical data for this figure are given in tables III,
IV, andV. —.

—

5. Application of Cylindrical Functions of Ccmplex Variable

Where Temperature in the Upper Part of Vertical

Channel is Higher Than in the Lower Part

Tn the computations, the case must be encountered where A is
greater or less than zero so that (kR)4 receives a positive or negative
sign. The computations are carried out with the aid of the ssme Bessel

‘function tables (ref. 2], bearing in mind the following circumstances.
In equation (5.1) and further on, the magnitudes fikR and +kR are

ccl
~

roots of the characteristic eqqation (3.10)

.
for

its

(@~ = S&# (5.44)

the differential equation (3.9). If we denote

corresponding

Hence, in

JO({fkr )
so forth,

roots will be

(5.45)

(5.46)
+Z -1/Z

eqmtion (5.1) and so forth, it is now necessary to write

in place of Jo(ih), and Jo(<iti) in place of Jo(h) and
where it is useful to remember that

~(fi~) = JO(@@; ~(~~) = Jl(@cc) (5.47)
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with the asterisk denoting
In the expressions similar
following form will enter:

NAC!Am 1407

.

the co~ugate value of the complex magnitude.
to equation (5.1) and so forth, terms of the

.

In particular, for n = O

ber(ti) Xbei(kR) - bei(kr) Xber(kR)

ber(kR) 2 + bei(ldl)2

(5.49}

Correspondingly, in expressions similar to equation (5.4) and so
forth, there enter the terms

(5.50)

Thus, the expressions for the velocities and temperatures are obtained
as real only in the case where the “amplitudes” of the velocity V. are
assigned purely imaginary values.

The symbols ber and bei denote the cylindrical ~ctions of
Thomson.

g
P

These formulas were used in drawing the figures and in some of the
tables.
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CHAPTER 6

UNSTEADY REGIME OF GRAVITATIONAL THERMAL CONVECTION

VERTICAL CHANNEL CE’ROUND CRC13SSECTION

1. General Observations

IN

I& us consider a block in which a vertical cylindrical duct or
channel has been drilled, and consider also a certain temperature gra-
dient characterized at infiuity and produced by both the vertical cmn-

$jl ponent A and the horizontal component B according to equation (5.2).
lato this channel a heated (or cooled) fluid is suddenly introduced.

$ Since the channel walls are colder (or wsrmer) relskive to the fluid,
w thermal convection in the fluid may be set up under known conditions.
~ This convection will trmsf er heat upward and, thus, distribute the tem-

perature further. If we are dealing with a casting poured into a cold
form or mold, this redistributeion may influence the development“ofthe

. process of solidification of the melt. We shall not consider the pro-
cess of solidification associated with the heat of fusion. We shall
restrict outselves to the case where B

2. Periodic Process of Cooling

= o.

Nonsolidified casting

For samplifying the computations the following
assumed, which is probably typical. However, other
with their own periods are possible.

The first stage of the process will be that of
with a strongly turbulent fluid *i&, on coming in

periodic process is
typical processes

filling the channel
centact with the

channel wall=,-is si.multaeously cool&d. Beca~-e of the strong turbu-
lence of a nonthermal origin, effectLve thermal conductivity and cliffu-
sivity of the fluid will be much higher than those tabulated (moleculsx).
Such a fluid will, therefore, in the thermal relation, represent the
analog of a strong heat-conducting-solidbody which had been cooled after
a sudden heat impulse was imparted on the axis of a cylindrical system
of coordinates. Such a thermal process has been investigated well and
is discussed in the following paragraphs. The deciding factor in the
process is the increase in the turbulence coefficient of the thermal

.
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diffusivity of the fluid. Particularly, simple
in the case where the form into which the fluid
stitute em inftiitely extended homogeneous body

N.4CATM 1407

relations exe obtained
is poured does not con-
but w b’e%onsidered as

a thin-walled vessel more or less thermally in&lated from=&n infinite
reservoir of constant temperature.

.

As a whole, the first stage is characterized by the fact that its
violent mechanical nonthermal processes have excluded the ~ossibility of
the occurrence of a more or Iessdefinite convective thermal motion. The
duration of the first stage is determined by the lessen@g.in the fluid R
of turbulent motion and by the decrease of the themnsl diffusivity of the P
fluid.

The second stage sets in when the turbulent motion is essentially
ended, and the thermal cc.xwectivemotion is tiitiated and develops within
the frame of the thermal pattern prcduced during the first Etage. The
transfer of this heat by convection is not, however, large at this the,
smd no essential distribution of the temperature has been produced during
this time. The duration of the second stage is determined by the magni-
tude of the kinematic viscosity of the fluid, that is, by.the ratio be-
tween the forces of inertia and friction.

Finally, the forces of inertia in the convective motion practically ,
dwindle to nothing. A more or less stable convective motion is estab-
lished which gradually dies down as the temperature differences produced

.

dindnish. As a result, the convective orderly transfer of heat dis-
tributes the temperature; the upper part becoming warmer than the lower.
The distribution proceeds slowly as ccmpared with the rate of cooling of

.

the fluid in a cross section. This distribution constitutes the third,
end last, stage of the process. The character of the third stage depends
on the cross-sectionalmean temperature distribution produced at the
stsrt of this stage. It is po8sible that, In the course of the third
stage, the character of the process wfll slowly change as a “resultof the
process of the upward heat transfer. Moreover, the character of the third
stage depends on the absolute rate of cooling, that is, on the intensity
of the heat removed from the fluid by the channel walls. In this connec-
tion it is desirable to investigate two variants, one of which is rapid
and the other slow.

3. First Stage - Pouring StronglyTurbulent Hot Fluid

h the case of infinite extension of the surroundm mass, the pro-
cess-in it is described at small distsnces from the channel and at the
tiitial instants by the following function of the distance and the time

—

(refs. lto 3).
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-r2
~ .—

4xet
eel=*e

e

r<h

t<g
e

(6.1)

J
If the channel were infinite, that is, if the distsnces of interest r
were always much less thsn the chsmnel height h, this formula would be
very accurate. If, however, the channel height is not lsrge as cmpared
with the distance at which the temperature stiU plays an essentid. role,
then at distances greater than h, the chsnnel in the infinite surround-
ing mass resembles a petit. This relation then holds

~
r2-—
4Ket

e e
‘2 = (4n:t )3/2

r>h

t>$
e 1

Because of the cylindrical field of the temperature
equation (6.1) goes over into the spherical distribution
approxhat ely at that instant, then

h2

%=q

(6.2)

distribution,
equation (6.2),

(6.3)

the temperature path equation (6;1) near the instant tl h the channel
neighborhood will change gradually and in the limit go over &to eqy.a-
tion (6.2).

b these formulas Q
poured into the chamnel,

where .9= is the tiitial

represents the heat content of the fluid

.-

Q = YR2hpc(8= - f3@)

fluid temperature,

. ature of the fluid walls snd the surrounding

.

and 13em the mean

mass . The process

(6.4)

temper-

Of

I
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cool
Y

at each distance r is characterizedby its specific time, for-
mulas 6.1) and (6.2),

t
rz

=~, (6.5)
.. .

The thermal behatiiorof the channel fluid can hardly b& described
by mathematical formulas in the first stage of the process. It may be
assumed that it is ”apprcnhately described
cription will be sufficiently accurate for

‘ where

R2_=t3<t>t2
4xe

byfo~a (6.1). This des-
those instants of t5me t

R2

‘z
(6.6)

that is, after the passage of the characteristic cooling time at the
channel walls (r = R). The symbol x denotes the heat conductivity of
the fluid increasedby the turbulence. Expanding the exponential func-
tion ti equation (6.1) tito a series, we may write

‘.c
,,

.,

(6.7)

The distributim of the fluid temperature thus tends to the parabolic law.
The height of the corresponding paraboloid graiiuallydecreases tith time
according to the hyperbolic law .

(6.8)

Hence, the total temperature decreases with t3me accordtig to the -3/2
power, snalogous to eqyation (6.2).

If the fluid is poued into a channel of a heat tisulated pipe, the
equation describing its cooling process will be (2.2) for v = O. The
boundary conditions are homogeneous

()ae
e
r=R

?EmR= E
-— (6,9)

where H denotes the “reduced” thickness of the heat insulation. Be-
cause equation (2.2) has now become ltiesr and homogeneous and because
of the homogeneity & the boundary conditions, we assutuethe exponential
dependence of the temperature on the time. For this purpose, we rewrite
eqpation (2.2) thus

A(3+J (6.10)

.

.

.
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The solution,

47

similar to equation (3.26), is .-:.

e=

c

eme~t

.(<)

JO -~r (6.U)

= ●

It is rendered exact by the boundary conditions equation, (6.9) which
assume the followtig concrete form:

R
E

(6.12)

The exbreme values of the nondimensional parsmeter that enters here will
be:

when H~O; (6.13)

In the last and least favorable case, the exponent rapidly ticreases with
the ntier of the term of the sumation equation (6.il.). For example,

()5.520 2
q2=— 2.405 Sll= 5.25q1 - -(6:14)’
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Therefore, in expression (6.11) the second term will decrease much more
.

ra idly than the first.

?

In particular, when the first term decreases to
1 e times the tiitial value, the second term decreases to e-5-25 - 1/300 -
of its initial value. The smaller wi~ then be the values of the follow-
ing terms of equation (6.11). We shall, therefore, use only the first
term of the sum of equation (6.11), and write

.= e#tJo(@xr)=@~t~fi-~)R2.[~~ (6.15) ~

Comparing this expressim with equation (6.8), we recognize the quadratic
temn in the brackets and the dependence on the the given by the factor
before the brackets. h contrast to equation (6.8), however, the form
of the paraboloid now no longer chsmges with time, but the ttie depend-

—.

ence is greater than in the exponential formula (6.8).

The duration of the first stage in the case of the heat insulated
pipe may be roughly estimatedby the characteristic,that at the instant
of its completion all.terms of equation (6.1.1)starting with the second
term are less than l/e times their initial value. This characteristic
determines the duration of the first stage in the least favorable case
thus

—

t4 1 R’ R’=—s
-ql X(5.25)2 - 27.5x

Generally, however, the duration of the first stage will.
similarity of the eqressions in equations (6.7), (6.8),
mits assumtig an approximation for the computations

-t~/t
e - JO(KR)

(6.16)
.

.
be shorter. The
and (6.15) per-

(6.17)

h this case, the duration of the first stage is evaluated by formula
(6.6).

All the preceding considerations show that the corresponding for-
mdas exclusively describe the dying down of the process ql<o. Thus,

at the end of the f’irststage the distribution of the temperatures over
the channel radius is always found to approximate the parabolical.

4. Second Stage - Developing Free Convective Motion

The second stage under conditions of fluid laminar motion is des-
cribed by the eqpations h which the fluid parameters correspond to their
steady, molecular (tabulated)values. Because at the end of the first

.

.
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stage the temperature distribution over the channel cross section is the
same h alJ cases (nsnely, a~roximately parabolical), to determtie the

. MSX= duration of the second stage it is necessary to treat only the
single eqwt ion, so that

+=-$ X% - gpe + VAV (6.18)

The second stage ticludes the steady state of motion described by
equation (6.18). !I!neduration of this stage, speaktig generally, is not

2
w determtied by the forces (g@) which give rise to it, but is dete~ed
+ by the fluid properties (v) and the form of the fluid flow. Hence, we

assume

where u
Sehts the

}

v = (u + uO)eqt
(6.19)

!l~ = V&.

represents the effect of the pressure gradient and ~ repre-
solution of a homogeneous equatim similar to equation (6.10)

% = UIJO
(r)

~r (6.20)

The solution is made exact by the following two boundsry conditions;
. nsmely, the presence of an adhering layer and the closeness of the chan-

nel cavity. The first condition gives

(6.21)(v)~=~+ulJO(~R)] eqt =0

The second condition gives

R

JJ

23(

[

R2U a2~2e@=O(6:~)
vrdrdcp= 2ti~+ul

“r 1

.
00 + xR

Whence, elIminating the ratio u/ul, we obtain

4%O(W) = J@R) ‘“-
(6.23)

By considerations =alogous to those adduced h connection with-
equation (6.15) and the adjoining equations, the smallest root (besides

.
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q= 0) of this transcendental equation is of interest. Computations
give as its value

P
)

~R =5.127

26.49v
q=-

R2
}

(6.24)

R2t=~==
-q .

J
Because for the majority of fluids VA = Pr is greater than unity, the
duration of the second stage is less than that of the first-Etage (eq.
(6.16)).

.

.

5. Third Stage - Cooling Fluid in the Presence of Ccxivecti.on

Rapid VarisJIt

The third stage is characterizedby the parallel dytig down of both
the thermal and the hydrodynamic phenomena. Denoting the general damping
exponent by q, we write in place of equations (2.1) and (2.2)

.

qv = - gpe + VAV

q6+Av=x&
}

(6.25)
.

the motion of the fluid being assumed lsminar. ‘“

b these expressions the considerations ccmnected with the derlvatim
of formulas (5.33}, (3.7), and (3.8) are taken into account and, there-
fore, the pressure term is omitted. Eliminating 6 frcm these equaticms,
we obtain successively

e =

q(vAv - qv)

(
Mv-q$+

~ (vAv - qv) (6.26)

+ g~Av = x(vMv - c@) (6.27)

)
2

$AV+-V=O (6.28)

This is a complete biharmonic homogeneous equation. We shall solve it
by a widely used symbolic device explained in deriving equation (3.19).
We set
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Avl + k~vl = O

} 1

(6.29)

v= v- -1-V2
AV2 + l&2 = O

c~artig equations (6.28) with equation (6.29) ad titiPQti kl ~d
~ by R, we obtain

x + y = (k1R)2 + (k@2 = -
@2($ +:)

%’ - g$m4~ = (k1R)2x (k.@2 = q ,x

(6.30]

b these eqpations x and y denote nondhnensionsd.auxiliary var-
iables (not space coordinates). Putting in turn q = constant snd
A . co~t~t, we obtati a system of isolines O’Qthe.~ p-. It my

shown4 that th& isoline q = constsnt represents parallel equidistant
straight lines, and A = constant represents a fsmily of hyperbolas re-
ferred to the asymptotes

xv-=- =Rc
Y~

}

(6.31)
X%1—=-=—
Yv~

These isolines are sketched in figures 9 smd 10. In ‘iihesecoordbates
the isoline q = O passing through the even qmdrsnts, correspcmds to
the previously discussed case of steady processes. For further treat-
ment of the equations, we assume sll general bounbry conditIons, .znd
as s ecial conditions we make use of the homogeneous conditions (eq.
(6.97) end requirement (eq. (6.22)) on the “closeness” of the channel
Cavity.

%!his work was carried out in 1947 by Y. Korclmkti by applying the
ties of analytic geometry. He ltiewise proved with complete rigor that
the trsnsfomnations given sre a necess~ and unique ccmsequence of the
basic assuu@ ion that the velocities are parallel to the surface gener-
ators of the channel.

.
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The solution of equations (6.29) and (6.26] anslogou”to equations
.

(5.1) and (5.4) is then written as follows:

[

Jo(klr )

1

JO(k2r)

“vow --

The requiranent of “closeness” of the cavity is expressed

nR . nR .

—.—

.

(6.32)

}

Jo(k&)
-m (6.33}

ai follows:

it
w
P

o= J VI-d?=
o ‘o *JO ‘O(k+ m-*JO ‘Jk@ h

{

J1(klR) J1(k2R)
= v&

klRJo(klR)‘k#Jo(k~
~}

(6.34)

This equation establishes a definite relation between the auxiliary co-
ordinates xy represented in fi~e Il. From the msening of the laminar
rmocesses under consideration, it is advantageous to consider only those

.

~orms of convection flows of the
the pipe is divided into no more
cular zone where the fluid moves
where the fluid moves downward.
to the point with coordinates

cooled flui~ where the cross section of
them two zones, namely, the central cir- .
upward, the peripheral annular zone
This camsideration restrict-sthe curve

Y= (2.405)2- 5.8
(6.35)

X = (5:520)2 s 30

From its
values of the

quantitative expression this varim-t corresponds to large
difference x-y or to sm unsteady temperature gradient

(wamner in the lower part] snd may be realized only at cat-trophically
rapid cooling of the model. The analogous case for the diametrically
sntisymmetric fluid motions is discussed in reference 4.

slow Varialt

Together with the rapid variant a slow variant may also be encoun-
tered h practice where because of sluggish cooling the rate of cooling
@ may, over a large time interval, be considered small and,”moreover,
constant. The corresponding equations will have the form

.

.
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.

.

0 ld.Q=.-
pdz - gpe -t

13+-AV .X28

Determirdng @ frcm the ftist equation and
equation, we obtain

6+AV = nAAv

8etting
.

v =-v --0:

}

VAV

(6.36)

substituting in the second

(6.37)

(6.38)

we observe here that V. represents the knawn solution of the homogen-
eous equation (3.9). The solution must be made exact by usimg the bmd-
ary conditions that express the presence of a boundsry layer ad the
closeness of the channel. We finally obtain,

;

{

[
J@)

1
- ~ Jo(kR) Jo(ikr)

v
= ~ JO(M) x J1&R) + iJl(’ikR)Jo(l@ +

[
iJ@R) + ~ JO(ikR) Jo(la)

JO(M)
.~}

-1 (6.39)
x Jl(@ + iJ@R)Jo(kR

The temperature e msy ltiewise be determined from the preceding para-
graphs snd from equation (6.36). To these expressions are enttiely
applicable the considerations on the complex values of the parsmeter k
obtained if it is warmer upward than downward (ch. 5, sec. 5). Because
of the trsmsfer of heat by upward convection, this is almost required to
be the case.

We restrict aubselves to the case where the temperature is still
practically constsnt (A = 0] along the model height. From equt ion
(6.36) we then fbd

. 7

A6;=— I
(6.40)
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equation tskes the following form:

2
0=-:X*

()
- gpeo + $@el : i-VAV (6.41)

By considering the boundary layer smd the closeness of thechsmnel, its
solutia is found to be

(6.42)

This convective process transfers upward just that qmtity of heat which
covers the heat losses of the u~er layers. The thickness of this layer
h of which the heat losses are made up by convection, is obtained as

h _ @6R6 ~ 1

VX2 2304
(6.43)

If this thickness is of the order of the channel radius or larger, the
convection may appreciably retard the cooling of the upyr part of the
casting in ccarparisontith the lower part. By talclngthis fact into
account, the setting phenomena may be consciously controlled (ref. 5),
and the casting spoilage reduced.

In a ~vity contatiing fluid periodically heated and cooled there,
or course, arises the phenomenon of the gravitational-thermal.“detector
effect,” that is, a vertical temperature gradient arises in which the
temperature in the upper part is higher than in the lower pa%. For
each half-cycle of cooling or heating, a convection occurs which carries
a definite portion of the heat upward. The accumulation of such portions
prcduces the detector effect.

.

.
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CHAPTER 7

CONVECTION IN INCLINED SLIT AS

IN CHANNEL OF A NONROUND

EXAMPLE OF CONVECTION

CROSS SECTIO@

1. Simplification of ‘kdsmental” BMrm.onic Equation

As an exsmple of the theoretical investigation of lsminsr convec-
tive phenomena in a channel of a nonround cross section, we consider the
thermal convection in em tifinite inclined slit filled with fluid snd
bounded by semi-infinite solid masses with p-ne parallel boundaries.
b the surrounding masses a constant temperature gradient with the fol-
lowing components is produced by an infinitel.ydistant heat source; (1)
psrallel to and (2) normaL to the slit. The sy’stemis iJJmstrated b
figure 12. The gravity acceleration vector 13es in the yz-plane.

. ..

bee

F’A

he

$=-B

fMe=o

-1

(7.1)

It is assumed that there is no temperature gradient component in the
external mass sbng the x-axis. From considerateions of symmetry, it must
be assumed that there will likewise be no temperature gradient component
within the fluid. Hence, there w=U.1be no velocity component slong this
axis

—

%!his chapter is compiled from data obtained by G. N. Guk.
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*

aee

757=0

E =0 1 (7.2)

‘x = o

Under these conditions in the laminsr regime a convec~lve flow with
one velocity component along the z-sxis6 is evident~ possible g

v

%

%

The eqpation of gravitational
state then assumes the form of the

o lX*+=--
P

=Vz

= 0

thermal convection for the steady
linear equations

(7.3)

d2v
gpecosa+v —

“aY21
d2evA= X—
dY2

(7.4)

By analogy with the foregotig paragraphs we shall consider the param-
eters of the fluid as constsnt, that is, we shall assume the parametrical
linearization of these structurally linearized equations.

Using the results of chapter 5, section 4, where the case of the
superposition of free end forced convection was discussed, we choose the
origim for z in the section where dp/dz = O. We restrict ourselves
to the case where there is no external pump to draw the fluid across the
slit so that only free convection occurs, ad the cavity is “closed.”
By analogy with the more complicated cylindrical case discussed in
chapter 5, section 1, we obtain ..

.

61t is clesr, however, that this is not the only solution and for
certain, not as yet formulated conditions, it ~pass over tito others
(e.g., into a cellular %nard solution (see d. 13, plate =)).
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(7.5)

or

This ordinary line= homogeneous differential eqwt ion of the fourth
order is easily solved by an elemsnt~ exponentid substitution. After
very simple, although rather kborious computations in terms of trigon-
ometric and hyperbolic functions of a real or complex argument, the solu-
tion reduces, with account tkken of the boundary conditions, to two
quslitatively clifferent solutions &pending on the si~ of the p=ameter
~4.

a
& 2. Higher Temperature in Lower Part
.

Sn this case the followtng conditions hold:
\

. h4>0
I

v
[ 1

sh~ E&AJ
‘V1 ZE-7E-

)

(7.7]

2
e -Az=- @ % a

[

sh @

1

sin ky
‘l a-— Sh m

On the boundary at the waU of the slit, the absence of a heat-flow jump
(see, General

whemce

Boundary Conditions, ch. 4, sec. 1) gives

(7.8)

(7.9)
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.

The difference in tenmerature on both boundaries of the slit (the “tem-
perature drop”) is ob~ained equal to

2
e+-e-=-4@v:osa

The total heat flow upward along the slit on a

.

.

VI (7.10)

se~nt of width X is

Q=- 2XV;
pcvk

[

sh 21& + Sti 2kR
gp cos a

1(shl@2 (Si12k@2

3. Higher Temperature h

fi this case k4 < 0. We set

The preced~g computations give

Upper Part

(7.11)

—.

(7.12)

[mC05 Xsh~-
V ‘V1 cosfixshniR

S5JI

1

qyxchmy
sinuiRXchmR

e- Az=-
vk2

[ 1

cosmy Xshmy+stimy xch~ .
VI ~ostixshmgp Cos a sin~xchmll

,

-1 (7.13)

The temperature drop over the width of the slit gives

The transverse

2
(3+- 8-=- 4*V1

heat flow through a sqwe centheter is

2Wn3
r
cosniRchmR-sinmRsh ~+ -

g~ cos a ‘1 sinmllxsh~
1-

1

si.nmRxshnR+cosmRX chfi
sin fixchntl

—

(7.14)

—

(7.15)
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The longittiti~ heat flow along the slit up- is expressed by
more complicated functions.

The titermediate case, wh- A =
0, is solved W an element- way.

From the second equatim of equation (7.4), we obtati

dze o

2=

@3=
m

- &B

e
.b-XBy

i

(7.16)

Fvom the first equation of eqyatim (7.4), we obtati

&=-
&Bg~ Cos a

Av
Y

dY2

iW=-
AeBg~ Cos a

AV
X+(y2+b)

w

v=-
hBg: ~’ u (ys + 3by + c)1

(7.17)

Taking into account the presence
of the boun~ ~er (v)- = O

smd restricttig ourselves to the antisyzmetricd case,
we eliminate the

srbitrsXJ constmts of inte~at ion
b and C and obt~

v=w~k-[$l)]

(7.18)

4. Conclti@! R--

b all of the three vari~ts discussed, making use of the re~ults

obtained with circul-~ cross sectims, we considered only the ant~-

symmetrical conditions.
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In the first two cases we have groups of three shuil.taneoustrans-
.

cendental equations that connect with each other the following five pa-
rameters of the convective process: the “snplitude” of the velocitY vl~ .

the transverse gradient of the temperature in the surroundingmass B
or the transverse heat flow Ae B, the temperature drq over the width
of the slit @+ - ~-, and the longitudinal temperature gradient A (in
terms of k and m). Thus, for the definition of the problem two of
these parameters must be given. In addition, the parameters of the fluid
must be known, the heat conductivity of the surrounding mass ~, and the

R
width of the slit 2R. As previously stated, it-must be assumed that the ~
only solution reflecting the actual physical process can be that which
corresponds to the smallest root kR of these equations, which (because
of their transcendental character) have an infinitely large nuniberof
roots.

For the intermediate case, much more simple relaticms are obtained.

—

.

.
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CHAPTER 8

INVFSTIGATI07S CE’WATER

1. Thermal and Convective Parameters of Water

Among all possible fluids, water (H20) in its widespread existence
occupies an exchzsive position. For this reason it may serve as an ob-
ject of actual production processes as well as a substance for experi-
mental model investigation. The latter application is favored because
water contains a number of singular properties. We may here remark on
the large heat capacity of water aud the anomalous thermal expansion ti
the interval from 0° to 4° C. For this reason, water occupies first
place in the list of fluids capable of serving as objects of
tiestigaticn.

Table VT gives a selection of tabulated data for water in the titer-
val from 0° to 100° C snd for certati other fluids. Colmn 8 gives the
“convection parsmeter” g~/vx, computed from these data, which enters into
many of the preceding fommlas. Figure 13 shows the temperature depend-
ence of several water parameters h the interval from 0° to 100° C. Pre-
liminary tests have sh&n that piped
tilled water in the magpitude of the

2. Tmterpolational Formula

water does not cliffer much from dis-
parsmeter g$/vx.

for 0° to 40° C Ihterval

To facilitate the cmputat ions connected with the application of the
convection parameter at intermediatee points not listed h the table, an
interpolated formula has been computed (work done by N. M. Lurye) for the
titerval from 0° to 40° C. The formula represents the eqwtion of a
curve very accurately passing through the points given in table VI in the
0° to 40° C interval (the interpolated Lagrange fozmnda):

@ = 100(-20.5 + 5.022B - 0.007082 + 0.~76583 -
Vx

o.oooo59e4 - 0.mocm3e5] - (8.1)
cm3deg



62 -NACA TM 1407

3. Standard Convective Curve and hterpolated
.

Formula for @ to 40° Interval &-

As shown previously (fig. 4), the conditions for the existence of a
steady leminar convective motion in a vertical duct me equations of the
t~e of equation (5.15) (in the absence of a horizontal grsd.ient) or eq~-
tion (7.9), so that,

Hence

whence follows:

(8.2)

(8.3)

(8.4)

This formula gfves the distribution of the average temperature over
the cross section along the cavity len@h within the presence of a steady
lsmtiar convective process. The origti from which the vertical distmces

.

are computed is taken in the section where the temperature is equal to
0° c. ‘btegration corresponding to the titerpolated formula

()E4Z
R = 100

{
-20.5e + 2.511e2 - 0.0023~3 +

\

o.oo19w4 - 0.oooo12e5 -
}

o .oo00002e6 cm-3

(8~1) gives .

(8.5)
J

This formula is valid from 0° to 40° C. It gives the staadard law
of distribution of the mesn tempe~ture over the cross section in a
channel for laminsz convection. It is found that the details of the

.-

systm, the channel radius R, and the relative thermal conducti.vity of
the surrounding mass~erms of the function ~4) affect only the
scale of the vertical distances z, but
curve.

Table VII gives the coordinates of
curve.

The standard convective curve is a

does not affect the shape of the

certain points of this stanti

more accurate form of the approx-
kte basic assumption that the vertical t~erature gradient is cc%=
stant, as follows from formula (2.10). Actu~, this cmstancy iS vd.~d .
for the presence of laminar convection only over a short distante of the

.
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duct in which both the temperature snd the fluid parameters remain con-
stant. The stsdard convective curve represents the actual law of tera-
perature distribution simplified to the ltiear by parametric lineariza-
tion h the fundamental eqqations (3.1) to (3.4) and those following.

It is useful to remark that the tider the duct, the larger the scale
of the vertical distances proportional to the fourth power h the formula
of the standard.convectim curve. The nsrrower the duct”,the lkrger the
vertical t~erature gradient sad with it, the greater the possibility
of a considemible disruption of the 13nearity of the equations. For
appreciable flow velocities, it is found that the temperatures and fluid
parameters in one part of the horizontal cross section cliffer consider-
ably from the temperatures sad ~rsmeters h szmther part of the section.
Because viscosity strongly decreases with temperature, it is found that
the cross section of the rising hot stream is appreciably less thsm the
cross section of the descending cold stresm (for a “closed” duct).

.-. .

.



64 NACA TM 1407

.

.

CHAPTER 9
.—

EXPERIMENTAL MODEIS

1. Glass Model

In the course of verifying the preceding theory, a number of models
having a similar construction were investigated. The majority of the
tests were conducted with glass ?ncdelsfilled with distilled water. This
kind of model is represented by a glass burette provided with a series
of thermocouples. The burette was chosen because the opening of such a
tube was calibrated with the same accuracy with which the burette was
prepared, and also because it is well.lamwn. As shown by certain meas-
urements, the manufactured burettes are sufficiently round (i.e., have
almost the same dismeters for any azimuth). However, the degree of
cyltidricality and circularity (not el.lipticity)must be verified in pre- .
paring a convective model fran the burette. The need for an accurate
lmowledge of the model diameter follows from the circumstance that this
diameter (or radius) enters to the fourth power in the formulas. Hence, ●

em error of 1 percent in the diameter will give an error of 4 percent m
the temperature gradient.

M typical experimental investigations, a fundamental problem is
usually the determination of the mea characteristic temperature gradient
over the cross section (and over the per~ter of the section in diamet-
rical antisymmetry) of the model. For measurtig this mean gradient, the
burette is provided with averaging (over the perimeter) thermocouples
arranged as follows:

Attached to the burette are tightly soldered strips of thin wire or
foils, preferably of brass. The conducting lead from the strip is fur-
ther extended up to the switch of a galvsmxueter. Along several (four)
equidistant generators of the cylinder are stretched thin constantan
wires, each one soldered to each strip. In this wsy, each strip forms
a multiple (qpadruple)theznaocouple.

The difference of the average temperatures at the points where two
strips are located is accompanied by the appearance of a proportional
electromotive force between the copper wires extending from the model to
the switch. The ma~itude of this EMT is about 42 microvolt per degree
temperature difference.

.
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The ntier of these multiple thermocouples on the burette, their
arrangement, ad the dist=ces between them are determined by considera-
tions with regard to the object of the exper-ntal investigation con-
ducted. These considerations are discussed h describing-the experiments.

For measuring the mesn temperature at each zone of the model, these
thermocouples, giving the average over the perimeter, have proven them-
selves entirely satisfactory because with thin wires, the pert played by
their thermal conductivity is sma~, and the errors caused by the thick-
ness of the wall (if this thickness is umiform) are mutually compensated
for on the cold and wszm sides of the model.

A heater coil is situated at the lower part of the model for heating
purposes. This heater consists of a high resistance insulated (prefer-
ably ensmeled) wire wound directly on the glass of the burette. The wire
of the coil is extended by copper (preferably flexible) leads to the cur-
rent source, where the leads are joined lying on the glass as fsr as pos-
sible. The length of the heat- coil is from one to two outer diameters
of the model. The turns of high-resistance wire me wound as close to-
gether as possible. The resistance of the heater iE chosen to suit the
voltage of the current source so that it is often necessary to make the
heater of several.wires connected in psrallel. The wire is then wound
on the burette h %niLtiple threads” (a term tsken from screw-cutt5ng
technology).

Both wire systems, the measurtig snd the heating systems, me
tightly attached to the glass of the burette by fiber bandages (prefer-
ably of down threads).

For stabilizing the outside temperature and the radiation fields,
the model is placed h a jacket of a thick-walled.copper or alumhum
tube from 5 to 10 times the kn@h of the mdel dismeter. The gap be-
tween the model and the jacket is equalizedby means of centering disks
put on the mml~ and accurately entering the tiside of the jacket. This
gap is filled with pure ma~esium oxide (pharmaceuticalname maaesia
usta) used as a heat insulation.

Figure 14 shows a diagram of part of the model done in sections.
The fiber bandages are not shown.

For measuring the “cross temperatures” (the temperature differences
between the hot sad cold side of the model in a cross section) and for
deterndntig the azimuth of this cross temperature, corresponding “cross
thermocouples” must be used.

Figure 15 shows a diagram of a pair of cross themnocouples desisged
for these measuramnts. Four equidistant generators of the cylinder are
placed along four elongated strips of copper foil. The weaker the

.
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convective phenomenon investigated,the shorter these strips should be.
At the center of each strip are soldered the ends of tti.constantan
wires extending to the diametrically opposite strip and the ends of cop-
per wires going to the switch of a galvsmmeter (thermocouplesI and II).
The mttie system is tightly attached to the glass of the:burette by
fiber bsmdages, not shown on figure 15.

For investigating the distribution of the cross-temperature gradients
along the model at an azimuth fixed by the intentional inclination of the
model from the vertical, several cross thermocouples must be arranged
along the model. While the constmction of the previously described
models requires a certain experience and suitable care in operation, the
construction of multiple cross thermocouples requires very much more pre-
liminsqy and adjustment work. However, even with this method, the pro-
viding of a satisfactory model Is extremely laborious, and it is still.
difficult to recommend some good method (ref. 1, p. 997; ch. 11, sec. 3).

The glass models, preperedby the methods ~escribed previousl.y,gen-
erally had em internal.diameter of about 1 centimeter and somethnes 0.526
centimeter (for em outer diameter of 0.835 cm).

It is necessszy to take care that the model (notwiths~andlngthe
presence of the heat tisulating jacket) should be located h a place
where the temperature is constant without air vents or heattig installa-
tions. h an extreme case it maybe located h a closet having closely

.

fitting doors. If these conditions are not
measur-nts are difficult to bterpret.

2. Metal Model

For investigating convection the model

observed, the res~ts of
.

—.

used was constmcted by V.
V. Slavnov and follows the fundainentalfeatures.of the glass model.
Figure 16 shows the constructional and electrical scheme of the apparatus.
The letters a, b, c, and d denote the dimensions of the md%l tube con-
nected with the funnel e by means of the connect~g piece B. The num-
bers 1 and 2 denote two stages of qufiple thermocouples. The thermo-
couples are located on equidistant genemtors of the pipe. :Using copper
md constants conductors of the ssme length, the quadruple thermocouples
are joined at special junctions to common conductors conneEted to the
change-over switch of the galvanometers.Because the material of the
tube is electrically conductive (and not identical with the copper or
the constantan of the thermocouple), it is necessgry to join separately
the copper and constantan conductors with the.g@vsmometer.@mu@ a
two-pole switch, including a $znctim of fixed tqerature t
circuit of each constantan wire. These junctions are attachei t?t~
bulb of thermometer T and are individually insulated. As a control
one of the themmcouples is connected with a thermocouple attached to
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the bulb of a second thermometer t2 in the same manner. The bulbs of
both thermmneters with the attached thermocouple are dipped h paraffin
and placed ti Dewar flasks.

A heater consisting of high-resistance enmeled wire wound directly
dm on the metal of the tube is situated in the lower part of the model.
N
+

The model is provided with thermal insulation which fil& the metal “’
Jacket.

3. Temperature Recordtig
..

The investigated thermal processes are comparatively slow processes.
At the thermal diffusivity of water (for room temperature), about 2XL0-3
square centimeters per second, and diameters of the model of the order of
1 centimeter, the duration of steady thermal prwesses will be of the
order of 5@ seconds. At the ssme time, the period of vibration of the
prevslent mirror galvanometers, which must be used.because of the small-

g ness of the thermal -, of the order of 42 microvolt per 0 C, is of the

2 order of 5 seconds. Thus, the recortig of the readings of one thermo-

m couple by one galvsnometer is excessive. Roughly speaking, this is equi-

~ valent to obtaintig over a hundred readings dwing one process.

However, the specification of the thermoelectric recordings requires ““-
constant checkimg of the zero position, and the specification of convec-
tive processes requires the recording of temperatures at certain points
of the model (close analogy with synoptics). Hence, it is entirely nat-
ural to determhe somewhat the amount of accuracy in order to gain con-
siderably in reliability end clarity.

The widely a~lied method of recordbg the readings of several ther-
mocouples consists in the successive recording of the readizigs”-of cliffer-
ent thermoco~les by means of a single galwnometer. The galvanometersis
swit&ed from one thermocouple to another h a the titerval dm~ which
the gal’vammeter pointer succeeds h reaching a new position and record-
ing this position on the photographic @ate.

Naturally, the requirements on the aperiodicity of the galvanometers
must here, be raised snd the choice of the critical resflstance requires
careful attention. A change in sensitivity cannot be attained by shunt-
tig the galvanometersalone, or by merely ticreastig the added resistance
in the thermocouple circuit. Both these _itudes must be varied ti
such a manner that the resistance of the external circuit of the t&”imom-
eter does not change and become equal to the critical resistsnce.

●

If the resistsnce of the galv~cmeter is denoted by p, the critical
resistsmce by ~, the resistance of the galvanometersshunt by r, the

.
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added resistance in the thermocouple circuit by R, end the relative low-
ering of the sensitivity (through the voltage) by n, we obtain the fol-
lowing two equations with the unknowns r ad R:

(9.1)

The first equation of these equations expresses the requirement that
the external circuit of the galvanometersmust aJways have a criticsl re-
sistance. The second equation Of these equations connects the required
magnitudes with the relative lowering of the sensitivity n. If the sec-
ond equation is multiplied by the current givtig unit deflection of the
galvanometers,it expresses the requirement that this unit-current should
occux for the shunted galvanometers(left side) for n
(right side), as against the nonshunted

Solving these equations, we obtain

R = nRo

r n=—
n- 1

galvanometers.

the following

% \

times the voltage

convenient formulas:

.

(9.2)

The formulas show that by csrefully determining ‘~ it is possible to
choose the shunt r and the added resistance R for any lowering of
the sensitivity of the galvanometers n.

As a switch for the galvano&ter the step selectors used in the
automatic telephone station are recommended. These selectors have sev-
eral stages containing from 10 to 30 contact segments and also give a
wide cotiination possibility. Near the model the selectors require a
secure arrangement in removable jackets which help to protect them frcm
dust. The contact surfaces of the segments end the springs..mustbe wiped
occasionally with a cotton cloth, wet with alcohol. Glazed paper or
emery cloth must be entirely avoided.

The leads from the thermocouples should be soldered to-the segments.
Since there are a lage number of these leads, it.is necessary to arrange
the model close to the switch. It is recommended that the leads be made
of multiple-strand wire resulting in a flexible braid of en@meled copper
conductor of approximately 0.4-millWter diameter contained in a fiber
braid. This braid may initialJybe drawn together with a piece of light- ‘
ing cord.

.
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It is recommended that
rents in such a manner that
would be accompsmied by the

69

the thermocouples be connected to the seg-
the successive switthing of the segnents
successive recording of the fluctuatkg tem-

peratures (i.e., in the course of a cycle the recordtigs of the cases of
temperature rises should be .gouped together, and the css.esof tempera-
ture drops shtid also be grouped together, so that the trsm ition from
the rising to the lowertig temperatures will occur as infrequently as
possible, no more than once per cycle). This requires great care in
marking the ends of the multistrsnd wire before soldering the ends of
the wire to the thermocouples and se~nts. The observsmce of this rule
greatly increases the =aning of the photorecordtigs. ..

The step selector is subjetted to the action of au electr~gnet.
The connection of the electromagnet is effected from the centactor of
the control csm disk, located on the shaft of a Warren motor. h pre-
paring the contactor, it is”advantageous to make use of semifinished m-
terial such as that used for the telephae apparatus.

The bresking spsrk of the electromagnet circuit produces rapid wear
of the centacts. The safe wear of the electrma~et of the step selector
requires power of the order of 20 watts, maintatied for a short tUne.
Hence, depending on the source of the current brought to act on the elec-
troma~et, various schemes are recommended for retsrd3mg the wear of the
contacts.

For low voltage sources of current (a battery of 4 to 4.5 volts).
the electromagnet must be wound tith enameled wfre of sm approxtite
dismeter of 0.6 millhneter, altogether, about 4~ turns snd shout 1 ohm
resistance. Here, it is recommended to use the contact device with
which the armature is usually provided, aa is shown in figure 17. At
the instant the current circuit is closed by the cam disk of the Werren
motor (working contact 1), the armature of the electromagnet of the step
selector has not yet opened the block contact 2, shunting the added re-
sistance of about 10 olmw. A total current of the order of 4 to 5 smp-
eres, sufficient for the tistsmtaneous operating of the step selector
(switching of the galvanometersto the following thermoco~le), passes
through the winding electrmnagnet. Contact 2 opens practically without
a spark, and through wind- electromapget a current of about 0.5 smpere,
sufficient only to hold the electromagnet armature in the attracted po-
sition, starts to flow. The armature drops when contact 1 opens, and
like contact 2, occurs practically without a spark. The very slight
residual spark may be eliminated by shunting the electromagnet with a
resistance of approximately 100 ohms. ..

b this low-voltage scheme it is necessary to pay great attention
to the condition of the contacts. It is particularly harmful to use oil.
which may find its way from the motor to contact 1. It is recommended
to wind high-resistance wire (a resist~ce of 10 to 100 ohms) on the

..-

1
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.

bobbin of the electromagnet and, thereby, avoid excessiv& construction
detail.

.

With a high-voltage current source (e.g., a hard rectifier of 300
volts), it is recommended to bring the electromagnet into action with a
condenser, according to the scheme of figure 18. The center of the fig-
ure shows a typical (selenium) rectifier. The center of the rectifier
is connected with the phase wire of the city current through a block con-
denser. The capacity of this condenser is conveniently chosen because,
h the case of a faulty circuit, it should serve to limit:the current,
and thus protect the rectifier from overheating. For example, for a lim-
iting current of the rectifier of 40 mid.liemperes,its capacity should
be chosen of the order of 1 microfarad.

The rectifier charges the main condenser of large capacity (electro-
lytic). The size of this condenser is chosen experimentally as a function
of the parameters of the electromagnet. This scheme is not exacting re-
gardimg the parameters of the electromagnet but functions.well with elec-
trmaguets containing a greatly differing number of windings and, there-
fore, having different resistances. The higher the number of windings,
the smaller the capacity of the condenser sufficient for god operation
of the scheme, but the nmre destructive is the breaking sp~k h working
contact 1. The clostig contact spark does not strongly affect the work-
ing contact. .

In the regulation of the step selector it is necess~ to note care-
fully that the operation of the electromagnet should occur tistantly and .

rapidly, and it should also be accompanied by the Jumphg of the contact
sprtigs as far as possible from the center of one segment to the center
of the neighboring segment, aud so on along the entire selector.

The wires to the photo recording galvanometersmsy be stificiently
long, end the galvsnometer itself csn be situated in the photo
laboratory.

Further on, examples of photo recordings will be given. On the lat-
ter, the recordtigs of the same ob~ect serve as indicators of the time.
The distance between the recordtigs corresponds to the lag of the switch
multiplied by the number of segments or objects recorded. On many of
the recordings flaws, ejectims, gaps, and scallops will be found. These
brperfections served as reasons and material for the previously discussed
guiding remarks.

4. Mvestigating Thermal Parameters of Model

The early theory of the thermsl convectim of a round channel con- .

nects the parameter of thermal convection (the critical vertical temper-
ature gradient A) with the thermal conductivity of the surrounding mass .
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& (see fig. 4). Hence, where the experimental investigation verifies

this theory it is necessary to compare the results obtained with this
value of the thermal conductivity of the surrounding mass, equivalent
to the corresponding parameter of the given model.

Although the thermal properties of the materials of which the model
is made may be lmown, the construction of the model is, nevertheless,
suf’ficient~ complicated. Hence, the computation of the equivaltit
thermsl conductivity may not be theoretically reliable. Thus, there
arises the constant requirement of a meth- for directly determintig
the over-all thermal parameters on the nmdel, one of which is the equi-
valent thermal conductivity of the surrounding mass. .4—

The preceding method is based on the photorecordtig of a special
--—

the?mal process occurring in the air-filled model. This specisl process
is produced by a small heater coil, heated by a constant current and
drawn tiside the model from end to end with a constant velocity with the
aid of ELspecial pile-driver smxmg-nt.

The heater (fig. 19), is constructed ti the following nnmer. On
a glass tube 120 millimeters long and 1.0/3.0 millimeter in diameter a
red copper pu31y (2) is securely mounted. The groove of the pull.yis
filled up to the edges with coil 3 of constantan wire, which constitutes
the heater itself. The dismeter of the puny is such that it fits in-
side the model, almost without friction. A double copper wire from the
heater of the make PShDL with a 0.21-millimeter dismeter serves, at the
same t-, as a Iifttig cable. The heater entered Wto the verticalJ.y
arranged mdel under the action of its own weight, increased by a lead
weight, not shown in the f@e. The cable is attached to the ttmnnof
the photorecording apparatus thus serving stitaneously as a pile-
driver mechanism. Hence, the velocity of motion h the tict of the
model is eqti to the rate of the photo recording.

Figure 20 shows schematically the nmdel investigated and the junc-
tions of the thermocouples to the switch segments Were T denotes the
tube of the model, A the slxmdnum Jacket, M the charge of magnesium
powder, insulating the mcdel from the jacket, smd P the moving heater.
The dotted limes denote the constantan wires of the thermocouples.

The equation of heat balance qplicable to an element of the tube
length dz (fig. 21), -Y be written .. ..—_

a26’pcsdz~+2apdze=x=s =dz+~dz’ (9.3}
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where p
ity; Al

2R1, the
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is the density of the material of the pipe; c, the heat capac- -
the heat conductivity; S, the cross section of

outer diameter; 6, the temperature of the tube

aged over the volume; P, the power input of the heater;
cient characterizing the heat transfer from the tube to
insulation.

Collected on the left side of the equation are the
izing the heat loss in the heat capacity of the element
losses; collected on the right side of the equation are

the tube wall;

element dz aver- -

and a, a coeffi-
the heat

terms character-
and In the heat
the terms char-

acterizing the heat gain through the thermal conductivity of the wall and
the heater. Dividing by dz, bearing in mind that the power P of the
heater moving with velocity v is a fuuction of the armnt (t - z/v),
and regrouping the terms, we.obt~

We set

dz= -Vdx )
P=P(x) J

seek to obtain the solution of this nonhomogeneous,
differential eqwtion with constant coefficients h

8 s e(x)
()

=et-:

%
s e’

a2e 1s — e“
~ V2 1

(9.4)

(9.5) -

linear-partial
the form

This substitution gives the following ordkry differential equation:

.
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This linear but nonhomogeneous equation with constant coefficients rosy,
in our case, be reduced to a homogeneous eqyation. Because the axial
dimenions of the heater are so small that it -y be considered as a point
source of heat. The function P(x) will, therefore, be zero everywhere
exce~t at the point where the heater is situated at the given moment
(“delta function”). At this point, the entire power P of the heater
is produced. Thus

whenx+O

when x = O (9.8)

Equation (9.7) for all values of x, exceyt x = O, assumes the
form

We shaIL seek a solution h the follawbg form:

e = goew

whence, after substituting in equation (9.9), we obtain

\

L

[

1+

[

1-

lqJ >1%1 J

(9..9)

(9.10)

(9.11)

(9.12)
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when X<o

when x = O

when X>o

qlx
e = f30e

lge = ueo + qlxlge

\
C3.lJg_ dlge
dx dt

= qllge = 0.4343ql J
e =

‘o

\

e = eoe%x\
when X=*

(9.13)

(9.15)

(9.14)

.

The trend of the curve 8 = e(x) is shown h figure 22, or in sem.i-
logarithmic scale, in figure 23.

The entire heat, obtained by the tube from the heater, is, in the
f~ analysis, expended only in the heat transfer characterized by the
psrsneter a. Wthemat ically, this corresponds to the folJmwing: ti-
tegrathg each term of equation (9.3) between the limits -OJ to e,
we obtain

—

f“ r Als -1-
-VpCs e’dx + 2m1~ edz =-y

J’
e“dx + po (9.18)

-m -m -w

.
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-vpcs(3
l:+ ’m.al-eti=-~e’ I:+’o

(9.19)

Because of the relations (9.16), the mibstitutions

P.
a=

‘ml
J’”

edz
-m

frorneqpations (9.13), (9.14) and (9.15)

f

+-J

J’
o

edz =-v
f

*e%x~ -
0 -v

-m -m o

give zero. Hence,

(9.20)

there is obtatied

qlx
@Oe ax

(9.21)

~
. Having experimentally deterdned the form of the function 19= e(t) for
& z = constant by photorecofiing and having measured the photorecord of

figures 22 and 23, the integral msy be obtained by the dtiect smmnation
method of e = 8(z) as well as by the (check) computation method h terms

. ‘f ‘m ‘lOpes ‘f ‘h C=es ql ‘d q2- ‘w J ‘he -ressim (9” 20)

permits determidng the first thermal parsmeter of the nmdel a charac-
teriztig the heat losses.

We recall that it is connected with the thermal conductivity of the
insulation ~ by the relation (ref. 2, p. 27), so that

b this formula, ~ denotes the

ure 20, having a constsmt (room)

‘>

inside radius

t-rature.

(9.22)

of the jacket A in fig-

—

I
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.
From equation (9.11) there follows

.

(9.23)

(9.24)

Equations (9.20), (9.23), and (9.24) give the complete solution of
the problem of the experhental thermal parameters of the model.

Figure 17 gives em exsmple of an automatic-record s--r to those
of figures 22 and 24. Its evaluation is similar to that of figure 23.
The symbols A, ●, Cl,and O in figure 24 denote the points of the aver-
age curves of the photograph obtained in moving the heater upward in the
model, and the crosses denote the points of the photograph obtained in
letting the heater move downward. The motion occurred with constant
velocities. All the curves are drawn in such a manner that the max- .
ordinate mrresponds to zero on the axis of abscissas.

As maybe seen, the form of the curves on figures 23 &d”24 is the
same. Mi?asurementson the graph of figure 24 gave the followtng values:

1— = 470 sec
q~

1
— = 1150 sec
-qz 1 (9.25)

The measurements of the three curves on the same photograph (fig. 1),
gave the following value:

f“ E13dz = 0.242 =e
-m

7
The figures denoted by r-

records.

0.242x773.5
8.4

= 22.2 deg cm (9.26)

numerals refer to the photographic
.
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.
b this record, 0.242 centheter is the linear
one work cycle of the switch (distancebetween
8.4 millimeters per degrees is the sensitivity

77

length correspondtig to
the photo marks), and
of the galvancm.eterdeter-

mined by means of the graduated record; the u~er horizontal series are
the points correspondtigto 0.300 millivolt, that is 7.15° C. The num-
ber of 773.5 millheters is the sum of all the ordinates of the photo
record.

The computation checkby formula (9.21)

J“
edz= 22.4 deg

-m

gave

cm (9.27)

The record was taken for the glass model of 11.28/13.28 mill~ters
in diameter for a heater power of 0.0532 watt = 0.0127 calorie per second.
By formula (9.20) the following average value is then obtained:

CL= 1.46x10-4 cal/deg sec CM2 (9.28)

It shouldbe remarked that of this number, the proportim falling to the
s-al copper (A = 0.9) wires of 0.41-millimeter diameter with cross-
sectional area 0.C0132 sqwe centimeter, at a distance of 6 centhneters

. from each other alcmg the model length (each of them 1.68 centimeters
long to the jacket) is

. 0.90x0.00132
%= 2@llX6X1.68 ‘

0.28x10-4 cal/deg sec cm2 (9.29)

By formula (9.22) the fo120wing is then obtained for the thermal conduc-
tivity of the magnesia:

~ = 0.62(1.46 - 0.28)X 10-4 X 1.27

= 1.00X10-4 cal/deg cm (9.30)

(The thermal conductivity of the air at 20° C is 0.60KL.0-4cal/deg”cm).
By formula (9.23) for the thermal conductivity of the model, there is
obtained sfter substitution

.

.

0.0031J-cm/see; S = 0.38 CM2

3.14x133xl.46xlo-4(o.c0311)2x470m150
0.38

84KL0-4 cal/deg cm

31.8Xl.0-4cal,cm/deg

(9.31)



78 NACA m 1407

The molecular thermal conductivity of the water in the model channel is
.I

14KL.0-4calorie - centimeter per degree (i.e., less than half the thezmal
conductivity of the walls). .

It should be noted that of this number,”t-& proportion falling to
the four constantan wires of dismeter 0.21 millimeter is

A’s’ = 4 XO.054X0.000345= 0.75X10-4 cd. c~deg (9.32)

The corrected value for the glass is, therefore, obtained as follows: lp
;

?lls = 31.0x10-4 cal cm/deg
(9.33)

~= 82x10-4 cal/degcm

If formulas (5.27) are considered, then, for the models of
11.28/13.28 millimeters in dismeter of the ssme kind of glass with which
the majority of the tests were conducted, it is found that the thermal
conductivity of the equivalent surrounding mass Ae is obtained equal

to 0.00141 calorie per degree - centimeter (i.e., of the ssme order as
the thermal conductivity of the water). Thus, for these glass models,
we have approxhnately A = A=.

By formula (9.24) we obtain
.

pC = 1.64 cal/deg cm3 (9.34) .

Hydrostatic weighing gave p = 2.59 gTsms per ctiic centimter. The
thermal capacity of the model glass is then c = 0.63 calorie per degree
squared.

In the carrying out of this method, the following espechlJy impor-
tant difficulties require careful attention.

It is necessary that the heater actually be a “point” source (i.e.,
that the axial dimensions of the heater should not exceed the radial
dimensions). With a heater three times the diameter length, good record-
ings were likewise obtained but their titerpretationpresents extreme
difficulties.

—

Each of the upper set of thermocouples registers a rise in temper-
ature when the heater passes by the lower thermocouples snd registers a
lowering temperature, even in comparison with the ~acket, in the titer-
mediate positions of the heater. The phenomenon is
wkn the upper pert of the glass tube of the heater K:YTF~Ad
with a wool filament over its entire length almost up to the inner
diameter of the model. This clifficulty is evidently cause~ by the con-

.

vection of the air h the tube over the heater. Hence, to remove the
air, it is expedient to arrange the model horizontally. .
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.

This method has a zumiberof defects that lower its reliability.
The thinner the model wall as conpred with its dismeter, the more heat

. cmduct tig its nmterial as ccmpared with the heat insulation; the thinner
the thermocouple wires, the more reliable is the method snd the higher
the quality of the investigated model.

. .
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EXPERIMENTAL lTlV13STI&UlKt@lUF FREE TMZBMAL CONVECTION IN VERTICAL

MODEIS OF ROUND CROSS SECTION FOR STEADY REGIME

1. The Two Regimes of Thermal Convection and

Their Dividtig Critic~ Petit

Numerous messurements, observations, and photorecwdtigs caz%ried
out on clifferent vertical models have led to the conclusion that for a
moderate heating by a heater coil, situated in the lower part of the
model, a convective motion of the fluid arises in the mcdel. h its
fundamental features, this motion is correctly described by the pre-
ceding theory.

The details of the observed phenomena are the following: After a
moderate current is established h the heater circuit, the temperature
distribution along the model undergoes more or less strong changes at

. first (see ch. 11). These changes gradually cease sfter the elapse of
a certain the, and a definite steady temperature distribution is estab-
lished. This distribution is characterized by an almost constant ver-

tical temperature gradtent almg the model.8

The magnitude ~ this gradient withti broad lhits does not depend
directly on the power input to the heater (table VIII) and mly sltghtly
chsnges with the temperature of that pert of the model where the gradient
is measured; on raistig the temperature, the gr@_ient decreases. The
sense of the temperature gradient is always such that it is warmer below
the gradient than above.

Thus, the phencunenonof convective heat transfer by a fluid In a
vertical tube differs from the molecular heat transfer in solid bodies
in the followtig properties: (1) by the practically constant gradient
along the model, and (2) by its independence of the power input of the
heater.

81f the fluid would solidify, the cmstant gradient aLcmg the model
b.

would chsnge into a gradient decreasing by the exponential law (fig. V).
.
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Figures V snd
ature distribution

. where the fluid is

81

VI ccmpare examples of photorecordings of the temper-
al.onga model through convection, and in the case
replaced by a brass rod tightly fitted into the model.

The upper curve gives-the tem&rature of the iower, warmest thermocouple
(table VIII, pts. I and II).

Check tests established that this regime corresponds to the laminar
motion of the fluid. Figure II shows a photograph of the path of the
particles of almntium powder suspended b water in the mcdel, and iJlum-
tiated from the side. The photograph shows how a flow with sxisl symmetry
inside the heater is arbitrarily formed over the model length in the flow
with dismetral satisymmetry: on the right the warm fluid rises, on the
left, the cold fluid descends (fig. III shows a photograph of the upper
part of the same model).

.Forvery small heating power inputs in the model filled with fluid,
as in the case of a solid body, m exponentid law of temperature dis-
tribution is observed. This law is valid only h those yarts of the
model where the temperature gradient has not reached the characteristic
magaitude. It is necessary to assume that for these small powers there

~ sre no corresponding gmdients of the convective motion, sad the non-
moving fluid behaves like a solid body.

~
At each part of the model, the

temperature gradient is proportional to the heat@ power.
.

Likewise, when a greater current flows into the heater circuit, a
more or less violent nonsteady regime, chaz@mg rather rapidly to a new

. regime which only with reservation may be called.steady, is olxse~ed at
first. The temperature recording is now uneven and reveals erratic fluc-
tuations. The vertical gradient of the temperature undergoes jumps (at-
tatiing 30 percmt of its mean value). This mean grtiient is practically
proportional to the heating power at each part of the model.

By check tests using the suspended alumim.unpowder, it was found
that the convective flow now has a turbulent structure; the scale of the
turbulence betng of the order of the channel diameter of the mcdel.

Thus, for small vertical temperature sadients the fluid is app~~-
ently stationary, the heat transfer along the model probably was deter-
mined by the molecular thermal conductisrity. On attaintig the charac-
teristic temperature @?adient, a laminsr convective fluid motion arises
which is capable of tramsferfig lsrge thermsl powers in a relatively
wide range of these yowers. To exceed the characteristic gradient
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is possible only at the expense of disrupting the lsminar motion of the

fluid, that is, at the expense of rendering the flow turbul.ent.g The
thermal properties of such turbulent convective flow resemble the prop- .

erties of a solid body.

From the precedtig cmsiderations it is seen that the characteristic
gradient has the following criterimal value, namely, that-the character
of the fluid motion is determined by the magnitude of the gradient. Be-
low this gradient, the fluid is calm, its flow being lamtiar, while above
this gradient the flow beccmes turbulent.

‘For contrast we recall the conditions of lsminar flow, namely, the
equation of a streamline must not contain the t~explfcit form. The
equations of a streamline are as follows:

dx W dz—=— =— .

‘x ‘Y ‘z .
or

dx ‘x—=—
W

‘Y

Vz
%=?

For Mdnarmotiaa it is necessazg that

then

or

avx h avzw-+=—=—=—
‘x ‘Y ‘z

ahvx ahv alnvz---a--=---w=----w-=fi
For steady lsminar flow, fl must be equal to zero.
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The characteristic gradient determines the hydrodynamic critical
point: a sharp qualitative chmge in the character of the fluid motion.
The turbulent fluid motion may be characterized as above the critical.

2. Ccmstsncy of Value of Convection

Parameter in Laminar Regime

hnerous measurements of yhotorecords snd other
g shown t~t the convection parameter, equation (5.16)
4

measurements have

(10.1)

actually possesses an ahnost
figure 4, and table II. For
approximately equal to 100.

+ glass models the ratio Ae/A

64= (Imp = Et&#

cmstant value, as defined by formula (5.15),
exsmple, for glass models this value is
Considering the previous statement that for
was found to be approximately 1, we arrive

at the conclusion that formula (5.15) satisfactorily apylies to glass
models (table VSII).

“+

d Careful measurements, carried out by V. V. Slavnov on a brass model
filled with water gave the value ~4 = 18&2. The corresponding value
of the thermal conductivity of brass lies within the limits of the tabu-

. lated values. The preceding findtigs show that formula (5.15) is also
stificiently accurate for metal models. In particular, it is entirely
evident that with an increase h the temperate, the parameter gj3/vx

;ZZv%% ;gZFwtTtme
gradient A should decrease so-that

maintains its critical value.

3. Quintitative Characteristic of Above-Critical

Regime of ThermsJ.Convection

As an orientating characteristic of the quantity of heat transfered
by convection in the above-critical regime, we employ a provisimal mag-
nitude deftied as follows:

QNU* = — (10.2)
~27Q

where Q denotes the heating powerj A, the time average of the temper-
ature gradient for the above-critical regime ad the remaining symbols

. have their previous meanhigs. H Q denotes the thermal power trans-
ferred by convection at a given sectiau of the model (where the gradient

.
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.

is equal to A), the expressicm (10.2) could provisionally have been de-
noted as the Nusselt nuniber Nuw applied to heat transfer through con-
vection from the low-lying parts to the high-lyiag perk of the model,
from fluid to fluid (eq. (5.17)). The accurate meaning of the Nusselt
criterion refers to the transfer of heat from a solid body to a fluid,

* in the preceding expressionor conversely. Thus, the persmeter Nu
has, to a large degree, a provisional character. Nevertheless, from
several series of tests with different glass models it was found that
the values of Nu* for the above-critical regime have a relatively small
scatter about a meen value. Figure 25 shows the results obtained to a s
large scale, the different synibolscorrespondtig to different models In E
different tests. As seen, the points arrange themselves about two inter-
secting straight lties where the vertical line corresponds.:tothe laminar
regime and the horizontal line to the above-critical regime. Figure 25
also shows? to a small scale, the relation between the previously men-
tioned intersecting straight lines, curve 1, end two known functions of
the true Nusselt criterion for the cases of transfer from a“solid body to
an unlimited fluid, curve II, end thro

T
a liquid layer, curve 111 (as a

function of the convection parsmeter ~ ).

Fran this graph the following conclusions may be drawm:

(a) Although Nu* is of a provisimal character, its approxhnate
~4 m the above-critical regimeindependence of the convection paremeter .

reflects an analogy of the thermal properties of the fluid in this regime
with those of a solid body. (See initial part of curve III).

.!

(b) The disposition of curve I is 3n striking contrast to that of
the known curves II and III. This contrast corresponds entirely to the
different meantigs of the par~eter Nu* and the true Nusselt number
Nu .

(c) The numerical value of Nu* (146&80), determined frcm the data
of table VIII, is undoubtedly much larger than the value of Nu* havhlg
a better defined physical.mesrdng. The value of Nu* must be considered
as an upper M.mit of the possible values of NUH (for the glass models
investigated; see also formula (10.10)).

4. Presence of Transverse Temperature Gradients

sad Results of Their Measurements

Che of the most important indications of the Lemfiar convective ther-
mal prcwess described by the formulas of chapter S, section 1, is the
fact that h this process one side of the model is warmer than the other.
The experimental verification of this is of great significance in estab- .

lishtig the reliability of these formulas.

.



NACA TM 1407 85

For measuring the transverse gradient, it is necessary to provide
the model with transversely situated thermocouples as described in chsp-
ter 9, section 1. The measurement of the trmsverse temperatures was
carried out close to the critical.powers. Under these conditions, the
mcdel represents a good heat conductor. Hence, the role of the heat in-
sulation becmnes small so that tests were conducted on glass models sit-
uated in air, without my specisl heat insulation.

It is convenient to compsre the meaaured transverse temperature dif-
ferences with the vertical characteristic gradient and to express them in
terms of a nuaiberof mciieldiameters over which the horizontal difference
is equal to the vertical. Such “relative” transverse temperature differ-
ences expressed in model dismeters have a definite physical sense for the
laminar regime. Frcm formula (5.5) and related fmnulas,
the trsmsverse

The “relative”
eqpal to

temperature difference is eq~ to

,$
‘I=+R -ep-R=e+-e-=2x2 x-&vl

trmsverse t~erature difference wU, by

f3+- e- ~k2

‘~vl

it folhws that

(10.3)

definition, be

(10.4)

On the other hand, from formulas (5.10), (5.17), snd (10.2), we obtain
.

~u%-?+._=dL/i&Q (10.5)
YiR2AA 2gpYd12XA 2g@AnR

where the braces denote the same ~ress ion that appears in the braces
h formula (5.10). El-at ing the magnitude V1 from the eqyations

(10.4) and (10.5), we obtain

W* . flx(e+~ey X*
2g@&

() /9 -e\2
(10.6)

Thus, the thermal
is proportional to the

. difference.

power trsnsferred by the lsmhar convective flow
square of the relative transverse temperature

.

I
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For glass models, when & = A, E = I@ = 3.2 ad F4 = 1~, the
.

expressicm in braces in apprmdmately equal to 30.3. Hence, approximately
.

(10.7)

If formulas
ature clifference

model, then for

then e+-e-:

(5.22) and (5.23) are used, and the transverse temper-
e -ee is computed on the outer surface of the glass

$e;d h;, f3e+-ge- is almost equal to or somewhat less

e
e+

-ee-=e+-e- (10.8)

Substituting the outer transverse tenrperaturedifference ee+-ee

for e+-e- ti fannula (10.7), we shall obtain a scmewhat lowered value

for NU-.

The measurements revealed very considerable cuter transverse temper-
ature differences. For example, in a model of about 1.2/1.O centimeters
~ di-ter for a heat- power of 0.169 calorie per secoud, a relative
outer temperature difference of 10.4 tube diameters was found, corres-

.

pending to,

I?U* “ 430 (10.9)
.

At the critical heating power on the boundary of the transitim from
the hminar to the above-critical regime a “maximal” transverse outer tem-
perature difference of 15.5 diameters (1.3° C absolute) was obtained,
which gives a value

Nu**= 960 (10.10)

This number is to be considered the lower limit for the Nu* zumiberpre-
viously canputed fran other considerations (sec. 3).

Further measurenmts showed that small deflectims of the tube axis
frcnnthe vertical.increased the transverse temperature difference. Since
these deflectims simultaneously increase the critical power, they also
increase the maximRJ.value of the transverse difference. For example,
for an inclination of the axis of the model of 5.75° fran the vertical.,
the maximal (below-critical)transverse outer temperature difference was
obtained equal to 2.0° C or 24 diemeters. Hence, for en inclined model,
Nu* = 2300 (ch. 17, sec. 4).
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.

AU. these measurements
verse temperature gradient.

.

87

sre related to the magnitudes of the trams-

5. Fluctuation of Azimuth of Transverse

l!apera’tureGradient

It was established that the azimuths of the trsmsverse teqerature
clifference (fig. 6) are more or less stable only for an inclined model.
For exaa@e, at an incltiation of 5.75° and a heating power of 0.169
calorie per second (lsmhar regime), the probable ticlinations of the
azimuth, as a result of numerous measurements, were approximately *1.7°
of an arc. For the same incltiatim at the above-critical regime (heat-
ing power 0.68 cal/sec), a probable inclination of -o of an arc was
obtained. The sign of the transverse difference in the Inclined model
corresponds to the original assumption that the upper side is warmer than
the lower side.

For a vertical malel, the azimuth of the transverse temperature M-
ference is very unstable even for the lamtisr regime. Randc%narrangements
and srbitrary rotations of the phme of diametral symmetry are observed.
For exsmple, figure 26 shows the vsriation with time of the relative outer

. temperature clifference, ccmsidering its azimuth. In figure 26 the simul-
taneous values of the relative transverse temperature Mference (ex-
pressed h dismeters end observed by means of both sets of thermocouples)

. are laid off on the coordinate axis. If these values are cabined by the
parallelogram rule, then with each pair of such vshes a definite direc-
tbn of the vector of the relative tknsverse temperature clifference may
be associated. This direction coincides with the normal to the plane of
antisymnetry whose length more accurately describes the transverse temper-
ature clifference than each of the sep=ate ccmponents. These values were
taken into consideration in the preceding discussion.

The preceding fi~e (fig. 26) shows b a half hour
verse temperature difference described almost the entire
(the marks were made after each minute of time).

how the trans-
surroundings
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CHAPTERU.

EXPERIMENTAL INVESTIGATION OF UNSTEADY REGIMES OF THERMAL

CONVECTION IN MODELS OF ROUND CROSS SECTION

1. Theoretical Considerations for Steady Rrocess

Figure 27 shows a segment of a channel model. For imperfect heat
insulation of this segnent, the part of the heat ql = Pcevz transported

by convection downward frm the source will be greater tk-n the part of
the heat q2 carried upward, so that a part of the heat q’ will pass

through the heat insulation over the length of the segment. Hence, the
curves q, v, and 6 at the upper boundary of the channel segment will
be below the corresponding curves referred to the lower boundary of the
same segment. For this reason, the art of the streamlines of the con-

.

vective flow from the rising stresm 7on the right) wt12 bend into the
descending stresm (on the left). At the central section the fluid veloc- -
ities, though small, are not zero, and are directed horizontally. The
theory of this phenomenon is discussed in chapter 15, section 5.

Experiment confirms this theoretical picture. Figure III shows a
photograph of this convective flow which was made visible by adding to
the water a certain smount of aluminum powder brightly illuminated fran
the side. A thin-walled glass tube with a diameter of 38 to 40 mini-
meters, without any heat insulation and heated at its lower part, was
used for the model. The photograph shows the bending of the streamlines
both near the cold top and along the model according to the scheme of
figure 27 (fig. 11).

Since in a lsminar convective flow along the model a constant mean
temperature gradient over the cross section is established, both this
mean temperature and the heat losses through the imperfect heat insula-
tion q.’ are a linear function of the vertical distances z along the
model. The heat expenditure required to cover the losses from the top
of the model to a given section z is a quadratic function of the dis-
tance z. The total heat supply Q covering these
a quadratic function of z. Hence, the velocity v
function of the distance

v= Vm ● :
m

heat losses is also
is again a linear .

(U.1) .
—

*
%’
P
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.

The origin frcm which the vertical distances z are computed is
laid in the section where the convective motion ceases. Beyond this sec-
tion the heat transfer continues, but this condition is probably only due
to the molecular thermal conductivity of the fluid and of the model walls.
This process corresponds to the transfer of heat through a solid rod, and
the corresponding temperature is an exponential function of the distance
z. The canbinimg of both laws occurs for z = O under the conditions of
continuity of both the mean temperatures and the the-l flows (i.e., the
temperature curve in this case has neither a jump nor a break).

Figure 28 shows the previously described distributions of tempera-
tures and velocities to the correspondingly chosen scales. Above the
point z = 0, the exponential law of temperature change combines tith
the n.bsenceof the convective velocity v.

ccl
l-l

Between the two sides of the model, where cos q * a and the ve-
locities of the rising and descending flow are r~spectively maxhal, the
following transverse temperature difference is observed:

.

(11.2)

~
Hence, on the same figure it is possible to represent 0+ - e- by.

the same straight Lines as v in a correspondingly chosen scale.

. On the basis of eq..tion (1.1.1)the effective path of the thermal
flow tor an infinitely small time interval dt may be ccmputed, so that

‘mdz=vdtaz-dt
%

(11.3)

By integrating this ecpa.tion,the dependence of the path traversed
by the flow as a function of the time can be determined:

(11.4]

Frcm this formula it follows that the time t required for the con-
vective flow to reach section z is a logarithmic function of z, v, or
(e+ - e-).

— . .
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2. Fundamental Differences in Unsteady Regimes ti-Presence
,

and in Absence of Convection

In order to investigate nonsteady regimes, the electric heater of
the model was connected to a storage battery through a progrsm switch.
This switch consisted of a separate telephone selector, successively dis-
connecting and connecting, thereby adding resistance in the heater cir-
cuit. The sections of this added resistance were chosen so that the
power of the heater varied approximately in the ratios 0:1:2:3:4:3:2:1:0.
The heating ~ower corresponded to O; 0.012; 0.025; 0.040; 0.054, and so
forth, calories per second. Each stage was maintained for 3 hours. Fig-
ure IV shows an exsmple of a record.

For comparison, figure V shows a similar record where a tightly fit-
ting brass rod was introduced into the burette in the place of water.
The power at each stage was maintained for 2 hours. &mparison of both
photographs shows that the phenamena of convective heat transfer differ
from the correspondingphenanena of the molecular heat transfer in a
solid rod.

In the steady regime, the difference consists in the_fact that the
temperatures (distances of the horizontal segments of the curve dram the
zero line) of different thermocouples fo~ow, for convective heat trans- :

fer, a linear law; and for a solid rod, em exponential law. The slight
deviation of the former for the hottest thermocouples is due to their
closeness to the heater, near which the horizontal components of the ve- .

locity are also sharply e
7
ressed (fig. II shows the lower part of the

flow presented in fig. 111 .

In the unsteady regime, the difference consists in the fact that the
change of temperatures with time according to the exponential law, mark-
edly expressed for the solid rod, is only very approximately expressed in
the convective case.

A particularly sharp difference is noted at the start of the record,
Figures VI and VII show photo records taken for accelerated motion of the
photographic plate and show how the thermal process reaches successively
from thermocouple to thermocouple. Figure VIII shows a photograph, which
was obtained by I. P. Merzl.yakovon another model. The graph of figure
29 was constructed fhm the measurements of the initial parts of figures
IV and VIII. On the axis of the abscissas
scale, the the corresponding to the first
temperature of the given thermocouple from
on the axis of ordinates, the logarithm of
ture (relative to the jacket). The points
lines●

is laid off, ~o arbitrafi
appreciable deviation of the
the temperature of the jacket;
the mean established tempera-
adjust wellto the straight
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Formula (11.4) thus obtains a first experimental verification.

3. Unsteady Processes Described by !l13xmsverseThermocouples

The preceding type of photographic records describe the course of
the mean temperature at a given section of the model. This mean temper-
ature is established as a result of the heat losses transmitted by con-
vection in heating a given segment of the model, and in covering the heat
losses. Therefore, on the records the heat transfer appears only in the
form of its result and not in itself. The intensity of the transfer may
be fo31awed more clearly frcxnthe observations of the transverse temper-
ature difference e - e+ -0

For this purpose, a new burette model was prawi.dedas described in
the preceding paragra~hs (ref. 1, ch. 9, p. 991). This model has several
transverse thermocouples, attached at distances 50 milJ3meters apart, and
three averaging thermocouples which were attached alternately to the first
thermocouples at a distance of 200 millimeters apart. The transverse

% thermocouples were constructed in the following manner. A copper wire of
s 0.41-milltieter in diameter was extended along the burette generator.

Along the generators on the opposite side of the burette, eight rhombs of
2
&

copper foil of O.10-millimeter thickness, with a side one-third the
burette diameter and an angle of 60°, were attached. A constantan tie
of 0.21-milltieter dismeter was soldered to the center of each rhomb and
encompassed the burette as a belt. The ends of this wire were soldered.
to the longitudinal copper wire.

The copper wires soldered to the corners of the rhmnbs were connected
to the change-over switch of a galvanometers. The longitudinal copper wire
was connected tirectl.yto the galvanarenter, and served as a cannon lead
for all the thermocouples.

For stabilizing the azimuth of the lsminar convective process the
model was fixed at an angle of 45° to the vertical, without any heat in-
sulation, so that the c~er wire coincided wikh the
the rhcmbs coincided with the lower generator of the
the transverse thermocouples measured the transverse
difference (le+- ee- to a certain scale (i.e., the

tive flow v).

u.er generator and
model. In this way,
outer temperature
velocity of convec-

By parallel tests with other models it was established that an in-
clination of the model up to 45° to the vertical does not strongly dis-
turb the process of convective heat transfer in its most essential
features (ch. 17).

.
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Figure IX shows a ssmple of a
averaging thermocouple is recorded
temperatures of the bottom (first)
recorded below the zero line.

J!UCATM 1407

.
record. The temperature of the lower
above the zero line. The transverse
and top (eighth) thermocouples are .

Figure X shows an example of a record when the velm~-ty of motion
of the photographic plate is increased, and the center (fourth) transverse
thermocouple is connected to replace the averaging thermocou le. The
photograph also shows the successive recor

Y
?of the lower upper curve),

the middle and top thermocouples (lower curve , and the zero line. The
=row at the left of the record denotes the instant of connection of the
heater, the arrow on the right denotes the instant of its disconnection.
Figure 30 shows the time of reaching the convective process counting from
the instant the heater is connected (abscissa), as a function of the log-
arithm of the established transverse temperature difference (ordinate).
The points lie on

In this way,
confirmation.

4. Forced Thermal

Further tests,
ond model described
(modulation, forced

a straight line. -

formula (1.1..4)obtains a second experimental

Fluctuations Produced by Mod~ation of Heater Power

for a 6-minute period, were conducted .withthe sec- .

in section 3 and consisted in the periodic change
fluctuations~ of the power of the heater. Figures

XI and XII show an example of a record. The photographs show the re- .

tardation of the convective waves produced by switching the added power
on and off (the instants of switching on and off are indicated by the
arrows) as they move along the model. The corresponding shifts in phase
on lag times of the convective signal may be computed by applying the
methods of harmonic analysis. Frcm a plot of the coordinates of the
thermoco~les and the corresponding deflections of the galvanometersthe
coordinate of the point where the convective flow ceases may be found by
extrapolation. This point is considered to be the origin &cm which the
longitudinal distances z are computed. Plotting the lag time as a
function of the new coordinates of the thermocouples on another graph,
we then obtain figure 31 (which gives the results of the evaluation of
several tests). This ~ph shows that the points again lie on straight
lines intersecting near the coordinates of the center of the heater and
the thermal inertia of the heater, which retards the devel~ent of con-
vective phenomena by approximately 80 seconds, may be determined.

In this way, formula (11.4) obtains a third experimental
verification.

Figure XIII shows an example of a record of the temperature waves
of Angstrom as ap@ied to the convective transfer of heat. The inter-
pretation of this record has not as yet been clarified.
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5. Natural Thermal Dsmping Fluctuations in Convection

. for Models of Finite Length

In tests similar to those recorded in figures XI and ~1, but cor-
responding to greater heating powers, the curves took the form of damped
sinusoids (see also upper curves figs. VII(B) and VIII).

Figure 32 shows a typical curve on which the difference in tempera- ‘-
tues, by means of the middle (fourth) transverse thermocouple, is
recorded.

By tests of a preliminary character it was established that the
smaller the “period’tof the corresponding fluctuations, the greater the
heating power, and the shorter the column of fhid that is in motion.
The “dsmping” of the fluctuations increases with decrease in the heating
power. These facts lead to the supposition that the fluctuations reflect
the existence of a circular flow of fluid in the model. A definite por-
tion of the fluid which has repeatedly received a higher taperature
passes by a given thermocouple. ~ time this portion mixes and excha~”es
heat with the surrounding volumes of fluid, and the phenmenon decreases.
Figure VIII shows how the period of these fluctuations is lengthened as
the convective process extends to the more distant thermocou@es (i.e.,

. as the length of the fluid colmn put in convective motion increases).

.
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CHAYTER 12

MID PHENCMENA OF THERMAL CONVECTION IN MODELS OF ROUitDSECTION

(INTESTUWED BY TEMF.ERLTURERECQRDING METHOD)

1. General Distribution of’the TemperaturesAveraged over a

Cross Section Along Entire Vertical Model
-.

The hydrodynamic characteristic of the end phencmena is shown in
figures II and 111. From the physicmnathematical investigation view-
point, the very simple phenmena near the plane top (or bottom) of a
model is of great interest.

For measuring the mean temperature over the periphery directly over
the entire height of the fluid column (including the bottom and top) in
which the thermal convection occurs, a special model was constructed
(sketched in fig. 33). A brass rod (2) above and cylindrical glass
reservoir (3) with plug bottom below were attached to the grinsof the
support (1). Through this bottogyasses a small glass tube, closed by a
plug, in which a brass piston (4) sits freely. The high-resistance en-
ameled tire of the electric heater is wound on the tapered bottcm part
of this piston. A second cylindrical glass tube (5) tith a diameter of
about 1 centimeter is placed with slight ftrictionover the.rod (2), the
tube, and the piston (4). One layer of thin comer enameled coil is
wound about the middle of the glass tube (5), thus making up the measur-
ing resistance thermocouple (6). The tube (5) is provided with a reser-

1
voir with running water (7 and supply funnel (8). The middle part of
the tube (5)(with coil”(6) is surrounded by cotton heat insulation not
shown on the sketch. In the reservoir (3), mercury is poured forming a
tight mercury shutoff. Distilled water partially entering the reservoir
(8) is poured above the mercury in the tube (5).

With the aid of a clock mechanism and a pile-driver a&&mgement, not
shown on the sketch, the systa of details 5, 6, 7, and 8 is brought into
a very slow motion (11.8 mm/hr) in the vertical direction. The velocity
of this motion coincides with the velocity of motion of the photographic
plate in the recording ap~atus. In this way the resistance thermometer -
(6) records at first the temperature of the piston (4) serving as the
warm bottom of the water column at various heights, and finally the tem-
perature of the end of the rod 2 serving as the cold top of the water
column.
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The resistance (6) is connected to the scheme shown in figure 34
which represents a bridge, balanced for a certain mean test temperature.
The resistances of the branch (9) are chosen ina manner such that they
form simultaneously the critical resistance of the photographically re-
cording galvancmeter. The cutout switch (10) shunts 1.6 percent of the
entire resistance of this branch of the bridge. Therefore, its closing
unbalances the bridge in the same way the coil temperature raises by 40 C.
The connecting in of the switch (10) is done by hand and serves to grad-
uate the photorecord. Contact (IL) disconnects aut-tically each hour
for 10 seconds. The corresponding marks on the records serve as datum
marks; they indicate the time and origin and the zero line. The param-
eters of all systems are chosen in such a manner to assure maxinmn sen-
sitivity of the bridge for the mi?dmum heating of the coil (6).

An example of a record is shown in figure 35 in which the coordinate
axes are indicated, the vertical distance to full scale, and the tempera-
ture of the thermal resistance (6), and also the place occupiedby the
bottm and top of the model. In region 1 the curve corresponds to the
end of the nonsteady regime after the heater and the water cooler are
connected. Region 2 corresponds to the record of the temperature of the
bottom, region 6 to the record of the temperature of the top, and region
7 to the record of the nonsteady regime after disconnecting the heater
and the water cooler. The d3.stance x represents the degree interval,
4° C, obtained by connecting the cutoff switch (10) for a short time.

Through the middle of the photograph a nuniberof datum points pass
J. that indicate the zero ~.giving the time marks. The tanperature of

the fluid colmn in the model, averaged over the periphery, changes
strongly near the bottom and top, regions 3 and 5, and weakly in tie
center paz’tof the model, region 4. The photorecords show indentations
which reflect a certain instability of the convective process in region 4.

Fi~e 35 gives an instructive picture. It shows that with convec-
tion a small vertical temperature ~adient corresponding to a lower tem-
perature h the upper part is actually established along the center part
of the model, and which at the bottcm snd top goes over into Uother law,
the exponential law of temperature change.

The fact that the over-all temperature drop at the bottom in region
3 exceeds the over-all temperature drop at the top in region 5 is caused
by the heat losses over the length of the column. The quantity of heat
obtained fkom the bottom is expended not only in transferring the heat
to the top but also in the heat losses over the extent of the model.

2. Variable-Length-Column
.

For the purpose of further study of the.end phencmena, a second model
was ccmstructed and investigated and is presented in section b figure 36.

- —-
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In the lower end of a glass tube (1), of diameter of about 1 centimeter,
there is almost tightly inserted a copper plug;(2), the clearance being
closed by a piece of rubber tube (3). The enameled high-resistance wire
of the heater 4 is wound on the plug (2), so that the entire plug serves

.

as the hot flat bottom of the model. In the model there is inserted with
slight tiiction a massive copper piston (5) with the pistan rod ending in
the lug (6). The upper part of the model is surrounded by the cooling
reservoir (7) filled with water. The piston (5) thus fotis a cold cover
of the water column (8) in which is produced the convective motion under
consideration. This column consists of distilled water youred into the
tube (1) almost to the top. Two single-layer coils of the resistance
thermometer (9) made of thin copper enameled wire connected to the two
adjoining branches of the bridge are bound together 2 to 3 diameters
apart on the glass of the tube. The bridge is balanced when both coils
have the same temperature. In equilibrium, the switching on or off of
the switch (11) is not accompanied by the deflections of the pointer of
the photographically retorting galvanometers. The switch (10), described
in the preceding paragraphs, is used for controlling the sensitivity.

The piston (5) is linked at the lug (6) with a pile-~iver ap~atus
and a time mechanism with which it can move up or down with the velocity
of the photographic plate in the recording ap~atus (11.8 mm/hr).

It is assumed that the coils (9) will have a temperature almost .

equal to the temperature of the bottcm and top of the column (8). Thus,
for a given power input of the heating coil (4), the readings of the
galvanometersare approximately proportional to the “heat resistance” of *

the column (8). Moreover, by raising the lower edge of the piston above
the upper coil of the resistance thermaneter coil, it is possible to fol-
low the temperature of the model, averaged over the periphery, below its
cold top.

The preliminary tests with .thismodel consisted of vis&l hy&ro-
dynsmic observations of the motion between the bottom (2) and the top (5)
of cork dust added to the water. The observations were made with the aid
of a binocular microscope through the wall of the model. These observa-
tions showed that for a given heating power input the dust remained at
rest for small distances between the bottom and top. As this distance
was increased the B&d cellular motion (ref. 1) arises. The greater
the heating power, the smalder are the distances between top and bottcm
at which this motion occurs, and therefore the smalJ_erare the particles
and the more intense their motion. With further increase in distance,
this cellular motion goes over into an antisynmetric motion. illustrated
in the photographs, figures II and III.

At the conclusion of these preliminary hydrodynamic observations
the model was enveloped in a cotton heat insulation and the investigation -
was continued by the temperature-recordingmethod.
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Figure 37 shows an example
interval upward at the start of

. the indicated number of degrees

97..

of the records obtained. The scalar
the record (on the left) corresponds to
centigrade. Part 1 of the curve de-

&lC&3

scribes the steady thermal regime when the piston (5) lies on the bot-
tom (2). Part 2 of the curve corresponds to moderate distances of the
piston frmn the bottom when convection has not yet set in. The greater
this distance, the greater the difference of the temperatures between
the bottom and top. This difference is almost proportional to the fis-
tance. Actually the curve represents the initial part of the exponential
curve. The fluid here behaves like a sol.idbody. The heat resistance is
proportional to the length of the model column. Pert 3 of the curve cor-
responds to the convectiw laminar regime. Over a considerable distance~
the temperature difference is almost independent of the distance between
the bottom and top: the heat resistmce of the model is almost independ-
ent of its length; it is almost enttiel.ydetermined by the end regions
near the bottom and top.

Of striking sharpness are the transitions frcunregion 1 to region 2,
the instant of breakaway of the piston from the hot bottom, the transi-
tion frcunregion 2 to region 3, and the instant of occurrence of convec-
tive motion. Moreover, the latter transition occurs by several stages,
which evidently corresponds to the successive changes of several cellular
forms of the convective motion.

Region 3 ends when the lbwer face of the piston (5) passes by t&--
upper measuring coil of the temperature measuring resistance. Then re-
gion 4 of the curve now begins; this region corresponds to the gradual
decrease in the temperature difference between the measuring coils. This
region (4I is determined by the condition that the upward moving piston
carries away with it the adjoining region of large temperate gradients
and low temperatures.

The drop in t~erature near the top in region 5 is less than the
drop at the bottom in region 2 (compare regions 5 and 3 in fig. 35). Re-
gion 5 corresponds to the cooling regime of the model after the heater is
disconnected.

Figure 37 gives examples of photoreccmis corresponding to different
heating powers indicated on each photo&aph. The records embrace a range
of heating powers fram 0.00165 to 1 calorie per second. At the beginning
of some records the nonsteady regime, w3xLchaccompanies the switching in
of the heater coil, is observed.

From a comparison of these photographs, it is seen that the greater
the heating power, the steeper and shorter the rise of the curves is in
region 2 where the fluid behaves thermally almost Me a soud body.

.

..—

.—

I
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Of special interest is the record (5) in figure 37. Zlheregions 1,
2, and 3 are developed in it almost in the same way as in_the preceding
curves. In region 3 indentations are observed which reflect the incom-
plete steady condition of the convective process.for large heating powers
to which large velocities of the convective motion correspond. These in-
dentations on curve 5 are nearly four times as large as on-curve 4, al-
most half as high as curve 5. This emphasizes the nonlinear character
of the above mentioned inccznpletesteady condition of the process.

Furthermore, region 4 reveals a character that was not successfully
interpreted.

.-.-
The records, obtained with the piston lowered in the model, gave re-

sults agreeing entirely with those obtained in raising the.piston and are
shown in the previous curves.

..

As a whole the curves shown are very instructive, but we have not
been successful in drawing any quantitative conclusions from them.

3. Moving-Plunger Method
—

An interesting and simple experiment may be carried out in the fol-
lowing manner. In the model, figure 38,.a copper cylindrical plunger (1) -
which enters the model with slight friction is lgwered on a thin thread.
The height of the cylinder is a~roximately equal to its diameter,,the
inside diameter of the model cavity. If the mean temperature over the *
perimeter at any cross section of the model 2 is recorded and at the same &
time the cylinder is slowly drawn out from the interior of the model, a
record is obtained simil= to that shown in fi~e XIV. This record was
produced with the aid of a temperature measuring resistance according to

~

the scheme of figure 34. A short copper rod (3) fitting the model tith
slight ftrictionwas lowered into the model hollow before recording. Its
upper face served as the hot bottom of the water column; the middle of
the rod fitted within the heater.

As long as the cylinder lies on the bottcm, a convective process is
developed over it and the temperature of the measuring resistance (2)
differs little from the temperature of the cold reservoir above the model.
At the instant when the cylinder (1) breaks away from the bottom (3), the
characteristic tooth appears on the curve, marked on the photograph, fig-
ure XIV, by the number 1. The number 2 denotes the instant when the upper
face of the cylinder enters the plane of the measuring coil; the number 3
shows when its lower face issues from its plane. Over the distance 1 to
2, the measuring resistance records a gradual increase in temperature at
the bottam of.the model formed by the mgving cylinder, that is, over it,
It is noted that the c;oser the warm plunger a~rwche~ the meas~~
coil of the thermoresistance the more rapidly does its t=perature rise.
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On the segment 2 to 3 the plunger is situated
Its temperature rises, however, only slightly

. conductivity of the material of the plunger.

99

imide the measuring coil.
because of the finite heat
Point 4 correspo?idsto the

instant of cutting off the current of the heater. Over the segment 3 to
4, the temperature under the plunger is recorded. There is noted at
first the rapid rise of temperature connected with the removal of the
piston, then its more gadual lowering, connected with the effect of
heat, losses through the im.rperfectheat insulation are also noted.

Along the entire extent of the record, indentations are observed
indicating the incomplete steady condition of the convective Iaminar
process.

4. DispkC~t Method

Particularly descriptive are the photorecords obtained in the ssme
manner as in figure 38, but connected with the recording of the tempera-
tures in many cross sections of the model and obtainedby interchanging
the short plunger tith a long rd. Essentially, this method corresponds
to the even displacement of a fluidby a solid rod (or conversely) in
the process of convection.

The following photorecords were obtained with a gbss modelz as in
figure 14, of diameter 10.76/12.77 millimeters on which the fI.velower
thermocouples were arranged at distances of 10 millimeters frc.uueach other
while the remaining ones were at distances of 30 millimeters ficm each
other. ~ taking the different photographs the WPper edge of the brass
rod, moving inside the h~ter and for&ng the hot bottcm of the model,
occupied several differeritpositions relative to the thermocouples. For
example, on figure XV, two tests are recorded when this edge just passed
in the center between the two lower averaging thermaneters. The tests
ended in the recording of the thermal yrocess in the model during the
motion in it of the brass rod that almost filled tightly the model cross
section. The veloci~ of the motion was eqpal to the velocity of the
photorecording (11..8um@r). At one time the rod was drawn upward out
of the model and at another time it was lowered into it. The photo films
with the records obtained on them were placed together and printed on the
paper by the contact method. Both records agree sufficiently well.with
each other down to the individual indentations, on the curves, indicating
imccmplete stability of the lsminar convection.

In view of the importance of this question, such pairs of tests were
repeated with different velocities of motion of the brass ted. Figure
XVI gives examples of records obtained for a heating power of 0.090
calorie per second and velocity-of motion of the photographic p“&te-o@
11.8 millimeters per hour. The upper record A corresponds to th<””stie
velocity of motion of the rod as the velocity “of-the plate, the second
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to a velocity half as large, the third to a velocity an eighth as large.
.

From a comparison of these records, it is seen that the differences of
the “up” and “down” records are due to the the and not the coordinate
of the rod. The sluwer the motion of the rod, the more accurately do the “
records coincide.

In the following figures several phographs are given %%ich were ob-
tained by the above method for different heating powers. The initial
part of the record represents the distribution of the temperatures along
the brass rod standing directly on the support inside the model. At the

~

instant when the rod breaks away from the suppofi its temperature begins
In
P

to rise and the temperature of the rod to drop. The temperature differ-
ence increases at first proportionally to the thickness of--thewater
layer. When the thickness of the layer reaches a definite,value,which
is mnaller, the larger the heating power, a convective motion arises in-
creasing the heat transfer and the cooling of the support; the tempera-
ture of the support ceases to rise. As the lower face of the rod in its
rising motion passes by the level of one thermocouple after the other
and carries away with it the lower temperatures, the temperature of each
thermocouple rises corresponding.tothe temperature of the fluid at its
level, averaged over the periphery.

The photographs given previously show in the.first place that the
characteristic law of change of the temperature, averaged over the pe-
riphery near the bottom or top of the water column in which-the thermal
convection occurs, is the exponeritiallaw. From measurements on the
photographs, this functional relation is obtained:

4,-e-&)+Az_ (12.1)

.

where ~ = O when z = O. The nondimensional number s is approximately
equal to 1 or 2. —.—

These photographs also show that the instability of the”laminar con-
vection regime is particularly intensified for considerablepower inputs
and for definite heiahts of the water column, namelY, for multiples of
about three to four times

As a whole, however,

the inside model d&eter-( fig. XVI &d XVII).

5. Conclusion
—

.

all thes,erecords were &“ble to g-~vea final
quantitative picture of the end phenomena. The magnitude 90 in the
last formula is one-fourth as large as may be expected from the compari-
son of the molecular heat conductivity of water with the heating power.
In other words, the heat conductivity in the end phenanenona appears to
be four times larger than its tabulated (molecular) value. This impor-
tant question requires further clarification.
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CHAPTER 13

OPTICAL METHOB OF ll$WESTIGAT131GCCNVECTICN IN

MODEIS OF SPECIAL FORM

1. introductory Remarks

The distinctive feature of convective phenomena is that the veloc-
ities and temperatures change very remarkably within the fhid. These
chsages cannot be studied by observtig the velocities and temperatures
only at the boundaries of the apparatus in which the convection takes
place. The tivestigation of the deep internal layers requires the appli-
cation of stunesounding device that penetrates tito the body of the
fluid.

The construction of even the most intricate thermometers that can
be intrciiucedtito the stresm of the convective flow complicates the

* problem because the convective flow, on encounter even the thinnest-
filament, beccxnesdistofied relative to its initial direction end ex-

,
, changes heat with the filsment. For this reason those methcds which

permit a deep sounding of the convective phenomena, and at the same time
are as far as possible without effect on the development and course of
the process, sre of great value.

The optical methcds are methods of this type. A light ray in a
trsmsparent fluid exerts a negligible action on the fluid and at the
same ttie may undergo changes in the fluid which permit studying the
causes that produce than. The methd of addtig light-scattering par-
ticles to the fluid has long been employed h hydrodynamics. This meth-
od was used in preparing the photo~aphs of figures II and III.

This chapter describes a group of methcds that make use of the de-
pendence of the index of refraction (the velocity of propagation of
light) on the temperature. These methds are based on the fact, which
is described with great accuracy by the hewn fonnula “ofLorenz-Lorentz,
snd which may be formulated as follows: The changes in the tidex of re-
fraction are ahost exactly proportional to the chs.ngesin density of
the given substance (depending in particular on the temperature). The
expertintal predecessors of these methods are the variants of the
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penunibra(schlieren) method. One of these methods is cmirse (sees. 2
and 3), betig suitable only for demonstration purposes. Another, which
is a development of the former; possesses great promise as a quantitative
method (sees. 4 and 5).

2. Prismatic-VesselMethod

The convective phenomenon is produced @ a vessel of speciaL form -
.

a high prism of triangular or trapezoidal cross section (A), presented
in plane on figure 39. The vessel is filled with the fluid to be inves-
tigated and is placed directly in front of a large objective lens (C).
A point source of light (S) is set up at twice the focal distance behind
the objective. At twice the focal distsmce in front of the objective, a
real image of this source is obtained, which is-deflected toward the ves-
sel as a prism with vertical refracting edge sad expaded by it into a
spectrum. A diaphra@(B) with small opening (a) is placed at this posi-
tion. The light passing through the opening of the diaphragm falls on
the objective of the csmera. This ob~ective may have a very small lumi-
nous power but must be achranatic to the light rays acting on the photo-
graphic plate. on the ground glass of the csmera, a sharp iUIfLgeOf the
part of the prism A which is illuminated frcm behind through the large
objective C is obtained.

This apparatus recalls the schlieren apparatus often applicable for
the qualitative obsenation of convective-heat interchange~. The appar-
atus described differs in that the investigated object is given the form
of a prism. This improvement gives a number of advantages (ref. 1).

If the vessel is filled tith a h~ogegeous -fluid,the”deflecti~ of
the ssme color rays is the same in all parts of the prism. The diaphragm
cuts out a definite region from the spectrum (e.g., the gr~n region),
and a green image is obtained on the ground glass. If, however, in the
path of the light rays some place on the prism has a higher mean temper-
ature (i.e., a smaller density), the mesn index of refraction of this
place will be less and the light will be slightly deflected. only the
more refracted blue rays may pass through the opening of the diaphragm.
The heated part of the prism is imaged on the ground glass as a blue
spot. The more strongly the mean teqerature differs in two parts of
the prism, the more strongly does the color of the images formed on the
ground glass differ. The mean temperature may have such la%ge chsmges
that the correspondtig spots will appear black; they will be formed by
infrared or ultraviolet rays. In order that these parts may be seen,
the diaphragm and its opening must be moved horizontally.

—

.

If several layers of fluid of different indices of refraction are
arranged along the height of the prism, they will form bands of different
colors on the ground glass. But, if along the height of the prism a
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centinuous change, characterizedby the constant gradient of the tidex
of refraction, is prctluced,the fluid h the prism will act as an auxil-
iary prism with horizontal refract@ edge. For exsmple, if it is warmer
below thsn above, the prism deflects the rays not only toward the side
but also upward. The rays of different color form a somewhat deflected
and slightly diffused spectral band.

The plane of the diaphragm B is schmatica13y presented in the upper
left part of figure 39. The point O denotes the place where a white im-
age of the light source would be obtatied H the index of refraction of
the fluid were equal to unity (the trace of the prticipal optical sxis of
the lsxge objective C). The letters KqY on the same level with the point
O wk the spectrun formed by the warm part of the prism, and the letters
~CPl mark the spectrum formed by the cool part. The line E represents
the somewhat cliffuse spectrum obtained when a moderate vertical gradient
of the tidex of refraction is present in the prism. The line FB corres-
ponds to a large vertical gradient.

If the open= of the diaphragm is placed at the point a, then the
warm part of the prism of a blue color, and the cool part of a red color
may be seen through it. But no rays pass through it frcm that part of
the prism where a vertical gradient of the tidex of refraction has been
established. This part will appesr as black on the ground glass. W
order to obtain an image of this part, the opening must be raised to
potat b or d. Through this opening the entire prism, except the part
with the given vertical gradient, will appear as black.

r
( Places with a horizontal gradient of the tidex of refraction will

1
either strengthen or weaken the action of the prism A. Such places mst

> not be confused with the heated or cooled parts, as is seen from the
foUaw5.ng considerateions.

,.
Figure 40 shows scherratica.11.ythe path of the rsys in a pris&~ sit-

uated in a vacuum, b which there is a horizontal gradient of the index
of refraction “

We put AE=BF=
(inside the prism

n= n(x) (13.1)

dx. In order that rays passing with minimum deflection
meroendicubr to the x-axis) be deflected in the direc-

tion Bc, it is
to the optical

--
necessam that the opticsl len&th of the path ABC be equal
length o> the path fiG:

. .. . . -.

(nAB+BC= n+%
)

dx EG (13.2)
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where

AB= Xtg ~

EG =(X + dx)tg ~

1. .-

Substituting eqwtion (13.3) into equation (13.2!)gives

nxtg;+ dx -==(”+=ti)(x+ti)’g:~~tiD+G

cos~2

NACA TM 1407

.

.

‘*g$+(”+x=)’g:-h
whence

We set

‘o
n= —=o; y=~o+Y;ti y(x);

De+e
sin —

D =Do+5; no=
2

;
sin 2

(13.3)

(13.5)

—

y<< no

.-

}

(13.6)

~ <<-DO

The length 82 (2 is equal to the distance of the prism.A frcm the open-
@ a) denotes thehorizdml displacement of the openhg in the diaphragm .
B. This displacement is required in order to see the prism in light rays
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.
for which the index of refraction is not equal to ~ but is equal to

n= no + y. Stice, owing to the relations (13.5),.

Do+e Do -!-e

Q
sin —

2
+ Cos

2
x:

(13.7)no+y+x~~
Sti ;

we obtain
DO+E

W=i&l=cos 2 X5y+x~ = K X(82) (13.8)
2sin g .

Fran the preceding formla the following conchs ions csn be drawn:

(1) b all cases where the gradients of the tidex of refraction
dy/dx are known to be small, the color for a white source or the dis-
placements 52 for a monachrmatic light source to a certain scale di-
rectly determtie the tidex of refmct ion

Y = K(5Z) (13.9)

The isolties of the same color (displacements)correspond to the topo-
graphic horizontal contour lines of the index of refraction (t~ature ).

.
(2) In those cases where the gradients are lmown to be urge and

occupy urow parts of the prism so that the over-all changes of the in-
4 dex of refraction are not krge, the color (or displacements) determines

these gradients:

(13.10)

W the latter case it is convenient to represent the image of the prism
as a “relief msp” of the index of refraction (temperature)with a mirror
surface illuminated under clifferent angles. The bright lines on this
relief map determine those places where its steepness corresponds to a
given position of the light source (displacement).

Thus, in the tige of the prism, the isolties of the same color
represent either lines of eqpal te~erature or lties of equal horizatal
gradient.

For the photographic recording of the ohserved convective phencmena
it is necessary somehow to distinguish the acttiic colors of the spectrum
from each other. In particular, this msy be done by the fol.lowtig

I
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method. A light source that would give a large number of ‘lines (iron
.

arc) must be chosen. From a preliminary spectrograph, a detailed deter-
minantion is nade on the given photographic plate of the relative titen-
sity of all.the successive spectral lines.

.
If the process of heat con-

vection in vessel A is photographed on the same material.,isolines of the
same color (i.e., of the same spectral ltie) will appear. By establish-
ing the order and relative titensity of these spectral lties, conclusions
as to the temperature distribution in the model may be drawn.

—.
For purposes of rougher cmputat ions, a simplified device may be g

applied. A M.ght source having a small znmiberof bright lines (mercury
arc) is used. Cne actinic ltie is chosen, and the model is photographed e

in the light of this line ~or several positions of the opening a of the
diaphragm. Each photograph gives its isoline of the seinecolor. The
narrowness, sharpness, and the reautied length of emosure of this isoline
are determined b; the”dimensions ~f the poi& scnurce-
the diaphragn (or their correspmdtig slits). It is
the objective C should be of a large luminous power,
character is not important.

This method permits a demonstrational variimt.

and the opening in
useful to note that
but its chromattC

.
For tie light source

S, according to figure 39, the crater of a Petrov electric arc is em-
ployed directly, snd the csmera is rephced by the arrangement shown in
figure 41. The adjustment is begun .byplacing in the path of the rays
deflected by the prism A a typical projection objective Q in such a man-

.

ner that it will give a sharp .hnageof the prism A on the screen z. A
diaphragm D is then placed with its opening ti the plme in which the w
@ge of the arc, expanded into a spectrum, is received. The Opentig k
this diaphragm is placed in the green part of the spectrum so that the
image of the prism is colored with an easily visible green color. .

—.

The difficulties of the further adjustment reflect the contradictory
requirements of sufficiently illuminating the screen while maintaintig
the sensitivity. This adjustment reduces to the choice of @e distances
between the crater of the arc end the large objective C (the choice is
accompanied by the shifting of the diaphragm D) and the cho~ce of the
dismeter of the opening in diaphra~D. The adjustment tit be coordi-
nated with the optical arrangement mployed. At the end of the adjust-
ment of the apparatus smd its testing it is recommended that-a reversing
prism P be placed immediatelybehind the diaphragm D so that.the image
on the screen wi~l be upright. —

The thermal convective phenomena are produced in the pr%natic ves-
sel A by spirals, balls, or lattices of high-resistance wire h which an
electric current is allowed to flow. The prism A should be filled with
nonvolatile heavy fluids that do not disturb the material of the vessel
(in -particular,the glue or paste that seals the prism edges). The most - -
suitable fluids appear to be mixtures:of glycerine =d water.
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In solving uncomplicated problems, the vessel f311ed wtth fluid
may be in the form of a rectmgular parallelepipeds,with a glass prism
placed before it. This arrangement is shown in figure 41 (A, the glass
prism; B, the vessel with fluid).

The results of work3ng with this optical method and.checking by
tests with light-sca.ttertigpsrticles are as follows: —-

.

(1) In the absence of thermal phenomena in the mixtures of water smd
glycerine all the assmrptims of the theory presented previously (includ-
ing those of the stratifid arrangements of solutims of different con-
centration) msy be fully confirmed.

(2) It is possible to investigate the temperature distribution for
the heattig of a homogeneous fluid. For small heating powers, the tem-
perature distributim CL@2ers in stability. On top of the heater a sta-
tionary column of rising warm fluid is observed pressing ti its flow
against the nearest wall. This distribution of the temperature gradients
tidicates the laminar fluid flow. b the center part of the model there
is only the vertical component of the velocity; the phezmuenon differs h
the presence of considerable horizontal and in the absence of appreciable
vertical temperature gradients. Near the heater and near the surface of
the fluid vertical temperature gradients, together with horizcmtal veloc-
ity components of the fluid particles, are revealed.

The steady regtis, on connecting in the heater, proceed in the fol-
ltig manner. An instant after the heater is ccmnected a cap of warni
fluid is formal over it. This fluid rises qtickly, leaving a track be-
hind it; thus, it reseniblesa mushrocun. On reaching the surface of the
fluid, the cap wanders off to the side or breaks up and gradually van-

---

ishes. When the heater is disconnected, the observed phenomenon grsd-
ually fades, and in a few seconds the picture vanishes without a trace;
the temperatures have balanced out.

For considerable heatfig power tiputs the risimg column of warm
fluid does not remati stationary. Branches separate frti the column ““- -

——__

the phenomenon assumes a “rtiglet” form (ref. 2, p. 75). The stronger
the heating, the more violent is the motion observed h the fluid.
Along with considerable horizontal gradients, cmsiderable vertical tem-
perature gradients occur at scme places.

(3) It is possible to investigate convective phencdnenawhen the”mod-
el is divided tito two se~nts by a thin metallic partition like a sec-
ond bottcm. The fluid of the lower se~nt is warmed by the heater and
heats the partition, while the latter heats the fluid of the upper seg-
ment . Under these conditions, wide convective flows with small hori-
zontal temperature gradients were observed in the upper segment. Near
the partition considerable verticsl temperature gradients were obserV~d.

.—
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(4) When the lower half ofthe model was initially f&kd with a
.

fluid of raised density (raised concentration of the glycerine in the
water or lowered temperature) ~d a fluid of lower density (lowered con-
centratim or raised temperature) was carefully poured on the upper half

a-

of the model, it was found that even a slight jump of density also blocks
the convective flow like a solid interposedbottmn (see ref. 2, p. 76,
fig. 28, p. 83, and fig. 32). Near the boundazy of the division consid-
erable vertical temperature gradients are observed. A deqsity ~W iS
accompanied by a temperature jump.

1%
As a whole, the image seen cm the projection screen presents a fas-

—.

~
cinating “picturesquespectacle.

— .—

3. Vertical-DeflectionMethod

For studying the phenomena of convective heat transfe~ at above-
critical power inputs in round tubes, a special model suitable for ob-
serving large vertical temperature gradients is employed.

.

The model (fig. 42) consists of a vertical burette A @th the enam- -..
eled high-resistance wire of the heater B wound directly on-the glass of
the lower part. The center of the burette is surrounded by a prismatic
vessel D in the form of a rectangular parallelepfped, with a cork bottcan
and two lateral glass walJs. Placed a the upper part of the burette is
a funnel E, serving as the cold reservoir. The burette, funnel, and
prismatic vessel are filled with water. At times it is useful to place
ice in the funnel.

.

—.
The middle part of the model is set in front-of a lsrg~ objective C

of a schlieren apparatus with horizontal lmife edges F and ~. These
edges are adjusted in such msmner that, in the absence of a;thermal phe-
nomenon, only the luminous divisions of the burette are cle&rly visible
on the ground glass of the camera against the black backgrmind. When
vertical temperature gradients arise (warmer below), the corresponding
part of the burette acts as a prism, deflecttig the rays upward. These
rays pass over the seccmd knife edge through an djective Hqnd fti on
the ground~ss k of the camera, where a luminous image of this part
of the burette is formed.

The tests show that, for small heattng powers, no optically appre-
ciable vertical temperature gradients arise. For heating powers larger
than the critical, the entire fluid in the burette spontaneously breaks
up along the vertical into a number of segments separated frcaneach other
by considerable temperature jumps. The boundaries of the segments shift
spontaneously in a disorderly fashion. The most typical form of this
displacement is in an advancing displacement. Along with it a second
typical interchangtig form is also often encountered: The lumhmus
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boundsry dividing two segments bends, stretches out, assumes the form of
sm integral sign, and breaks in half, each part very precipitately unit-

. ing with the opposite faces of the interchsaging segments. These defor-
mations of the parts of a large gradient reveal a “waltzing!’interchange
fluid motion of the two neighbortig segments. The axis of this motion
is some diameter of the tube.

These tests show that the l=ge gyadients obtained at above-critical
heattig powers are nonuniformly distributed over the height of the tube.

Accl They sxe concentrated prticipally at the boundaries of deftiite regio=;
~ nsmely, the se-t boundaries. Within the limits of each region m in-

tensive lsminsr motion smd heat transfer undoubtedly occur. In addition,
however, a waitzQ motion simult~eausly intermingling the contents of
two neigliboringregims somet~s arises. b this wsy, when the heattig
power is increased, two processes occur together. First, the mean gra-
dients increase; and secondly the frequency of the interchangtig motion
(end with it the heat transfer) increases. This is the explanation of
the above-critical section on figure 25. !Ihisqlsnat ion contains an
essential.statfstical element aasociatad with the previously mentioned
disorder of the yhenomena.

4. Lattice Method

Tn an experimental verification of the laws of heat propagation (and
also of dflfusion processes), it is, ti the ftial aaalysis, usually nec-
essary to check the correctness of the fundamental equation of heat con-
duction or the equation of diffusion that formdly a~ees with it. The
essential term in these equations is the Laplacian of the temperatures
or the concentrations. The direct computation of the Laplacian (i.e.,
the sum of the secmd derivatives with respect to the coordinates of the
observed magnitudes of the temperatures or concentrations) by the methcxi
of finite differences is associated with large errors, since it is re-
quired to compute small differences of large magnitudes measuxed only
approximately. Mvestigators must therefore have recourse to v=ious
indtiect devices, for exsmple, to approximate first the observed mawi-
tudes by some conveniatly chosen analytical functions of the coordinates,
and then to ccqute the value of the Laplace operator of these functions
by an analytical method.

.-

Thus the direct experimental determinantian of the magnitude of the
Laplacisn, even for the conditions of the two-dimensional problem, is
very destiable. An optical arrangement that
lem is described b the following paragraphs

The investi~ted model A, provided.with
h such manner that it serves as the subject
the obJective in the schlieren arr~ement.

permits solving this prob-
(fig. 43; see ref. 3).

positive lenses, is des~ed
of the investigation and as
The focal distance of this
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objective should be large compared with the dimensions of’the model (small -
luminous power of the model-objective). The model is illuminatedby a
point source of light 6. In the absence of sny themal @ diffusion pro- .
cess, the image of the light source is focused by the model-objective on
lattice B representing a systan of equidistant vertical and horizontal
rods, at the intersections of these rods. Through the god objective Q,
placed directly behind the lattice, the model-objective is focused on the
ground glass D, on the photographic plate of the usual csmera, or on the
film of a moving-picture apparatus. This image will be dark, since it
is obtained only from the rays scattered by the model, because the direct
rays of the source sre kept back by the intersections of the rods of the
lattice B.

If a thermal or diffusim phenomenon now arises in the mdel, then
at some regions a density gradient occurs smd with it a gradient of the
tidex of refractim. Such regions will act like prisms, deflecttig the
rays toward the greater densities. The light passing through these re-
gions of the mtiel does not fall at the intersection of the lattice but
on a new part of the lattice, either on its rod or in the spaces between
the rods. ti the first case a dark image is obtained on the positive
of the photograph, in the second case a lmdnous kge is obtained. Thus,
dark stripes that break up tito two fsmilies appear on the photograph of
the model. Each dark stripe corresponds to one rti of the lattice sepa-
rated from the point of initial focustig by a definite distance. Hence, .
me fmi~, correspondtig to the horizontal rods of the lattice, forms
on the photo~aph of the model isolties of e~l vefifi~ gradimt of the
index of refraction, and the second family forms isolines of equal hori- .
zont~ gradient (eqyal density, temperature> md concentration). For the
computation of the sensitivity see the following paragraphs.

The arrangement of the isol.tiespermits the following interpretation.
The number of isolines of equal vertical gradient corresponding to unit
length of any verticsl se&gent within the limits of the -ge of the
model represents, to a known scale, the space rate af change of the ver-
tical density gradient at this regim of the model (i.e., the second deri-
vative of the gradient with respect to the vertical coordinate). In the
same way, the number of i.solinesof equal horizontal gradient correspond-
ing to the horizontal unit of length represents the second derivative with
respect to the horizontal coordinate. The sum of the two mxibers (with
account taken of their signs) will give the magnitude of the Laplacian
of the density to the same scale (index of refraction, temperature, and
concentration).

Therefore, the probl- formulated is directly solved with a large
degree of accuracy. In comparison with the methd of section 2 (fig.
39) this method presents the following features:

(1) The most essential difference is that the diaphragm is replaced -
by a lattice.
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(2) Such a narrow range of
the ticomplete achromatism
an obstacle.

light waves is used (for photographing)
of the mciiel-objective does not consti-

(3) The large objective C is conib5nedwith the rmxielA, which is the
least importsnt dfiference.

In the followtig photographs exsmples of the application of this

method are given.10 A cyltidrical cavity-in a surroundtig metal &s’s -
.

with horizontal axis smd of a diameter and length equal to 35 mil~ters
(see fig. 54) was used for the model. The cavity was bounded on both”
sides by spectacle glass and was filled with glycertie. The vertical
distance is marked on the photographs by a straight pluniQline.

Figure 44 corresponds to the case where a vertical temperature gra-
dient (warmer below) is prcduced in the surrounding mass. As a result,
a convective motion arose in the cavity; the warm liquid rises alcmg the
vertical diameter and drops along the sides. At those regims of the
model where the fltid titensivel.ywarms or cools, at the bottcm and top,
the Laplacian has a large positive or negative value, the isolines of
equal gradients then lying close together. This is particularly marked
in relation to the vertical gradients. At the center part of the model,
the heated fluid, on rising, carries a~ lfige amounts of heat, mati-.
taining an almost unchanged temperature. In this part there are practi-
call.yno isolines. More accurately, one isoltie rolled into a ftitastic
ball is observed here. It can be deciphered by ticreasfig the focal dis-
tance or by using a small meshed lattice.

Figure 45A corresponds to the case where a horizontal temperature
gradient is produced b the surrounding mass. As a result, a convective
motion is produced 3n the cavity; along the warm wall the fluid rises
and along the cold wall the fluid descends. A considerable density of
the isolines of both famil.iesis observed in those places of the model”
where the temperature of the fluid undergoes a large change. ~ the.
center of the model there are indications of only a feeble thefil pro:”
cess. The isoline fo-g a closed curve b the center of the photo-
graph corresponds to an almost zero horizontal ~adient. The isolines
obliquely forming two pafis of nmtudly embractig figures belong to the
fsmily of equal vertical gradients. . -.-,.—

It is useful to emphasize that h the phenomena of cliffraction lim-
it, the sensitivity of the described method is b the downw&rd and not
in the upward direction. The reason for this difference is that the lat-
tice standtig in frent of the object.iveof large luminous power bresks
it up tito a multiplicity of objectives of small luminous power, and the

.

l*G. N. Guk participated ti the pre@rat ion of these photographs: ‘
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forming of the images of the stripes near one mother is ~quivalent to -
.-.

the photographing of a small-meshed object. The image is produced by
narrow pencils of light rays coming from the parts of the model that lie .
close together. In figure 46, P denotes the plane of tht lattice, q the
plane of the photographic plate, d the distance between the neighboring
rods of the lattice, and x the distame betweeg the correspondtig
stripes on the photograph. For simplicity, we assume that we are deal~
with the nearest neighborhoods of the principal optical axis 00 of the
camera. From the re&ngular trisngle=, we ~bta~, in an elementary
manner

22

()

~2+~+~+d222+$+$ =r=1 4 T

2

()

X2

}

d2 “Z2+$-$ =r~=Z2+~-~d+~

i%
~

(13.11)

whence, after subtracting,

(rl -
.

r2](r1 + r2) = Xd (13.12)
.

In correspondencewith the results of the diffraction theoti of optical
illstruments, the stripes obtained on the photograph are sharp if the dif-
ference rl - r2 is not greater than the half wavelength or the light

A/2. Setttig approximately rl + r2 = 22, we obtain the fo’~owtig condi-

tim of the sharpness of the stripe: —.

Xd >z~ (13.13)

Fran this it is seen that for rough’processes,when the gradient varies
considerably even over small distances (x is small), the lattice should
be coarse (d shouldbe large). Conversely, for delicate th~mnal pro-
cesses when a hardly a~reciable thermal phenumnon gives tide striPes
on the photographs (x is large), it is necessazy and possible to use a
small meshed lattice (d-be small).

The precedtig method may be applied for quantitativem&&sureMnts
in all those cases where the qualitative schlieren method may be useful.
The following paragraphs give some of the variant-sfor this method.

(a) For increasing the luminous power and reducing the -~osure time,
In particular for moving pictures of steady processes, the petit source
of light may be replaced by a plane source. In this case it should rep-
resent a negative reproduction of the lattice (transparentvertical and
horizontal convenient openings in a nontransparent layer) to a scale which
assures a dark image in the absence of the phenomenon under investigation.
However, it is necessw for the observable dimensions of the source to
be small if they are observed frcxnthe model center (“small luminous
power”).

.

.
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(b) The objective of the cszueramaybe replaced by a cacs,ve mirror,
on which the lattice is drawn. This varisnt considerabl.yreduces the
over-all dimensions of the appsratus.

(c) The objective of the rncdelmay also be replaced by a concave
mirror. A light rsy wst then pass through the model twice, a circum-
stance which duubles the sensitivi.tyof the methcd. This variant again
considerably reduces the over-all dimensions of the apparatus.

For suhjective observations the methctifurther permits the following
modification. The light source is replaced by an UJam5z@ted ground or
milky surface on tiich a tit icolored network of lines is drawn. The
camera is replaced by an observer who views the model through a small
opening, which is put in the place of the lattice. By observing from
the color of the lhe its direction (vertical or horizontal) snd its num-
ber (e.g., distanguishing the zero and fifth lines by specisl colors),
we are rapidly able to gain an idea as to the character of the observed
process from the configuration of the visible color pattern.

5. Application of Lattice Method to Experhental
2
~ Iiwestigation of Lsminar Convection in Cavity of Convenient Shape

l.1
.

As an exsmple of the preliminary application of the lattice method,
the investIgation of the concrete problem mentioned in the heading of the
section is described in the following paragraphs. A suitale cavity of
38 by 6 millimeters is bored ti the center of a babbitt parallelepipeds,
shown b figure 47. The cavity is stopped with two spectacle glasses of
1.5 diopters each, and is filled with distilled water. For filling the
cavity, a through channel of 3 millimeters is used. The volume of the
cavity was 1/70 as large as that of the surrounding mass. lt may thus
be assumed that the conditions in the model are approximately the ssme
as those of a slit in sn inftiitely large mass.

On both sides of the cavity psmillel to its length through channels
are bored, three on one side for inserting porcelain tubes with Nichrome
heater tiside, and two on the other side provided with connecting pieces
for the supply of cold water. The model is pressed in a Textolite ring
and is able, on the horizontal parallel rods of an optical bench, to
assume any angle to the vertical.

.

The source of light is an opening of O.2-millimeter diameter in
the shade of a lamp.
perature gradient was

.

% present section

In these tests the vertical component of the tem-
very small snd was not of interest in this stage

was ccmposed from data obtained by G. N. Guk.
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.
of the investigations. For this reason, all the photographs were pre-
pared with the lattice consisting of only the vertical rodg. These rods
of 1.3-millimeterdiameter were sxranged with a distance of 3 millimeters
between their axes.

.
The photo objective of 45-millimeter diameter, with

a focal distance of 210 millimeters, was placed with the lattice about
560 millimeters from the middle plane of the model. The focal distance
of the model filled with water was 480 millimeters.

Under these conditions the computation of the sensitivity may be
made on the basis of the following considerations. Figure 48 shows two
parallel rays travers@g in the gecmetric paths, in the interior of the
mcdel. The distauce between the rays is dy. The optical length of the
path of one ray, passing through the fluid in a region with temperature
@ is an, where n is the index of refraction of the fluid. The opti-

cal length of the neighboring my is
( )

:desn+— , stice it passes in-

side the fluid having a differen~ t~erature. Thus, the two rays pro-

duce the optical difference of path of s ~ de over the distance s.

Hence, the wave front, and with it the light rays, is deflected by the
dn desmall angle s ~ ~. If this deflection of the rays corresponds to one

cell of the lattice; then (see fig. 46)
*

whence

For water at 20° C, dn/d9 constitutes apprad.mately
Hence, for these dimensions of the model, we obtain

x= 0.3 cm

2=56cm

S=4CM
1

-.
(13.14)

(13.15)

9X10-5 degrees-l.

—

(13.16)

de—=
W

15 deg/cmJ

.

The deflections (at a temperature above 4° C) are directed toward the
cold regions of the model. On raising the temperature the gagnitude

.

dn/d9 increases; hence, d9/dy, correspmdtig to one cell of the lattice,

.
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decreases, so that the smne absolute temperature gradients are now ex-
pressed by a higher nmber of the rcd of the lattice. Hence, the stripes
on the photographs that correspmd to the warmer regions of the model lie
closer together than fn the antisymnetric cold regions. .....___

The duration of the steady thermal reghes for this model was about
2 hours.

As illustrations, a nuniberof photographs that were obtained with
$ this model are here reproduced (magnified twice), figure XVIII, A, B, C,
g D, E, and F. On these photogaphs it is possible to follow the changes

of the thermal picture for vertical slits at clifferent heating powers.
The center of each photograph shows the black me of the plumb line.
h order that this line may always be seen, the apparatus was so adjusted
that the hage was bright h the absence of the thermal process: the
bundle of rays does not fall on the rod but m the center of the cell of
the lattice. As the heating power is increased the nuniberof stripes in-
creases, their form remaining almost unchanged. The S-shayed curvature
of the central ltious stripe may be observed on all photographs. The

$ stripe shows that the region of zero horizontal.temperature gradient

s occupies the entire lengbh of the central part of the model and is turned

m up toward the warm wall of the model and down toward the cold wall. This
l-l[ circumstance suggests that the vertical temperature clifference in absolute

3 value is close, if not equal, to the horizontal temperature dfiference.
Because the vertical heattig was not specialJ.yarranged, this difference
has the natural sign of being warmer upward.

.
Figues XEXA and B show photographs obtained with an inclined slit.

Figure XX shows photographs obtained with a horizontal slit.
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CHAPTER 14

CONCLTJD~G SUMMARY

OF L311EAR

OF Eu?ERIMENTAL 131VESTIGATIONS

AND QUASI-~ CASES

As may be seen from the material presented h chapters 9 to 13, the
theory described at the beginning of the book is essentially valid for
Mminar fluid motion.

1. The numerical value of the magnitudes entering the theoretical
formula (5.15) is satisfactorily confirmed in qeriments on models of
different diameter and on mcdels made of different materials (ch. 10,
sec. 2).

2. The convection parameter is actually constant along-the model
height in those cases where convection takes place (table VIII). In the .
computations it is necessary to consider the trend of the standard con-
vection curve (ch. 8, sec. 3).

3. The I.sminarmotion in a closed model actually cons~ts in the fact
.

that the section of the model spontaneously divides into two parts: in
one part the warm fluid rises upward,
descends downward (fig. 111).

4. In lsminar motion one side is
10, sees. 4smd5).

and h the other part the cold fluid

actually w&mer than ~he other (ch.

5. Dianetral antisymmetry, corresponding to the smallest root of the
characteristic equation (5.15), ip actually obsetied above tie heater even
with annular heating (fig. II).

6. In the center part of a vertical model t% velocities of the lsm-
inar flow are, at least essentially, vertical and are accompanied by
characteristic small vertical andconsiderable horizontal temperature
gradients (ch. 13, sec. 2).

..
7. The conditions at the ends of the model do not play a deciding

role in the steady reghe except for the stiJJ doubtful case of short
columns of liquid (ch. 12, sec. 5).
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.
8. Nesr the plane

the exponential law of

* apprm hat el.yobserved

(ch.

from

9. The unsteady
11).

10. The Mninar
each other by a

boundaries of the mcdel (warm
the temperature averaged over
(formula (X2.1)).

1~7

bottom and CO~ top)
the perimeter is

phenomena of convectim cliffer in striking features

and above-critical convection regimes are sepsrated
sharp critical point (ch. 10, sec. 1, fig. 25).

11. The above-critical regbe is characterized by an approximate
constamcy of the provisional Nusselt nmber the value of which shows that
in the above-critical regime, the thermal behavior of the mcdel is equiv-
alent to a solid bcdy with a heat ccmductivity probably a thousand t-s
as large as the molecular heat conductivity of the fluid (ch. 10, sec. 3).

.

.
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CHAPTER 15 ““
—

CASES REQU’3XINGSOLUTION OF NONLINEAR EQUATIO~S

OF GRAVITATIONAL CONVECTION

1. Practical Significance of Nonlinear Cases ~d

Restriction”of Scope of Problem ‘-
5

Chapter 5 shows that the ~alyticsl. treatment in know functions is
possible only for linear differential equations that describe only a
specialized case; namely, the strict collinearity of the v~locity vector
of the flow, the tube axis, and the acceleration vector of the gravity,
along with constant temperature gradient along the model. ~Chapter U.
shows that, as a result of the heat losses over the model, this require- .

ment is not strictly observed ev”enin a model of specisl construction.
In nature and in industrial practice this requi~ment is skill less
strictly maintained even in more or less similar cases, fo~the following i
reasons:

(1) The noncylindrical shape of the ducts (the ducts tid tubes
of variable cross section)

(2) The nonuniformity of the wall thickness or the coefficient

are

of
heat conductivity along the duct

(3) The unexplained presence of heat sources or
additional temperature gradients

(4) The parametric nonlinearityof the process,

—

sinks “thatproduce

the ro~e of which
is particularly marked in ducts of smell dimensions (pores)

(5) The end phenomena and t~ phenomena near”the prin~pal heat “–” -
sources and sinks

—.

(6) The nonvertical position.of the channel &is.

.

.
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ln every practical case some of these causes sre very important,
while in other cases they sre decisive..

.

At the ssme time, however, the solution of a system of.nonlinesr
partisl differential equations does not lend itself to the application
of the lmown functions introduced in practice and studied in connection
with the solution of linear equations. Therefore, the mathematical
methods may be of assistance in studying the processes of convection
only in the form of certain complicated aud laborious computational pro-
cedures (method of successive approximations).

The absence of any generalized mathematical guiding principle in
regsrd to the theoretical cases of most interest makes it necessary to
give considerable attention to the cases that will acquire the greatest
practical significance in the future. In our present discussion, only
the preliminary theoretical results are given for the following three
investigations: the vertical circular tube with heat losses,’-thehori-
zontal circular tube, and the spherical cavity.

2. Observations on General Method of

Solution of Nonlinear Equations

No method of solving nonlinear differential equations in closed
form is known. Considerable study has been made of functions that rep-
resent solutions of linear differential equations. These functions,
only with rare exceptions, satisfy simple nonlinear differential equa-
tions. For example, the solution of an ordinsry differential equation
of the first order leads directly to series difficult to compute if this
equation is nonlinesr.

Therefore, the solution of the partial differential equations of
gravitational convection, which are nonlinesr and of high order, cannot
be a simple problem. Other more or less investigated solutions of non-
linear equations may here serve as an analogy; for example, those which
have important application to radio technology due to the brilliant work
of the school of Soviet academicians L. I. Msndelshtam and N. D.
Papaleksi. The different vsriants
mation have proven fruitful.

The essence of the method, as
tional convection, consists in the

of the method of successive approxi-.-

applied to the problems of gravita-
following three operations:

(1) The system of differential equations (2.1), (2.2), and (2.4),
by elimination of all unknowns except one, reduces to a single differ-
ential equation of a raised order. An example of this operation is the
transition from two harmonic equations of the second order to one bi-
harmonic equation of the fourth order (ch. 3, sec. 3).
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(2) By adapting to the special features of-the case@der con6ider-

.

ation, special dependence of the required function on alJ the arguments
except one are given for the indispensable con@tion of the separation .

of variables. In this”way,we”pass from the more general case of a
partial differentid.-equationto the narrowed case of an ordinary dif-
ferential equation (in total derivatives). An example of this operation
is the typical case of the introduction of an exponential function of
time (ch. 6, sec. 3, eq. (6.11)). In eliminating the unknown dependence
on the space coordinates by this method, use of-the property of space
symmetry is suggested. %

~

(3) The ordinary nonlinear clifferential e~uation is =olved by the _
method of successive approximations.

The essence of the method of successive approximatio& lies in first
introducing or see”king,on the basis of physical considerations special-
ized for the case under consideration, a certain psnwneter,that quantita-
tively characterizes the “measure of nonlinearity.” The r-equiredfunction

.

is then broken up into a sum of new functions o=which each differs from
the preceding by a multiplying factorj nsmely~ the Previoqely mentioned .
parameter of nonlinearity. Finally, the equatiiinis expanded in powers
of this parameter. Since this constant parametar is not zero, the entire
equation can be satisfied only If the coefficien-tsof the-different
powers of the parameter (the required functions of the re~ining single
argument) are zero. The single equation is thus converted into a system
of simultaneous equations. Each of the equ.ation$is obtained as linesx
with respect to theeuccessive required component entering=the unknown
function, but nonhomogeneous, containing on the right side:the required
components of the function and-t”heirderivatives in nonlinear combina-
tions. In turn, the solution of.these equations permits adding to the
previously found solution a new accuracy-improvingterm - the successive
approximation.

In this successive computation, a very larg-=significance is gas- “~
sessed by the “zeroth” approximation, which starts the process of suc-
cessive approximations and plays”the decisive rore. In choosing a new
function as the zeroth approximation,we can describe qualitatively new
processes (sees. 4 and 5). The linearized case (ch. 3) plays the role
of the “fundamental” initial orientation for the.hvestigation of certain
special variants of these qualitatively different processes,

The order of the three operations previously mentioned-may be chosen
.-

differently, depending on the special circumstances of each.individual
case, from considerationsof facilitating the technique of the laborious
computations. One of the operations may even .be:carriedout o“nlyPar-
tially, then the second operation may be carried out, and finally the
first operation may be completed (sec. 5). However, in whatever form the

.

parts of these three operations are carried out in any computational
proceduxe, in principle they represent only a single device.
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.
In regard to the physical meaning of these operations, the second

and third operation represent certain physical assumptions in mathemat-
ical form. In the choice of these assumptions a considerable part is
playedby the practical requirements, and by the possibility of realizing
a physically verifiable experiment.

In this connection it should be emphasized that the “fundamental”
equations discuseed in chapter 3 do not represent the original general
equations of gravitational convection, in which the-nonlinesx terms have
been mechanically deleted. The nonlinear ~hysica Ucharacterof the equa-
tions is maintained and representedby the convective term Av in the
equation (3.3) of heat conduction of Fourier-firchhoff. The structural
mathematical linearization was found admissible only by virtue of the
chosen specisl case where

(2.10), (3.5)

and

CD
l-l

3VZ
‘x = ‘Y ‘o; T=o (2.9)

$

Conversely, if the solution obtained in chapter 5, confirmed by the
experiments described in chapter 10, is substituted in the initisl equ-
tion (2.2) of chapter 2, crossing out the nonlinear term on the left side
of the last equation, these equations, “linearized!’in the same mechan-
ical fashion, will not be satisfied. One may convince oneself of-this
by an elementary substitution.

For simplifying the laborious computations it is advisable to add
a fourth operation to the three previously mentioned operations; nsmely-j
the reduction of the equations to nondimensional fore.

3. Case of Heat Losses Through Imperfect Heat Insulation12

Chapter U. discusses theoretical considerations and experiments con-
nected with heat losses through the WSHS along the chsmnel in which
thermsl convection is observed. These heat losses give rise to deviations
from the strict assumptions from which we stsrted in deriving the “funda-
mental” equations of chapter 3, and the reservations which were “tii=Yii
particular in section 5 of chapter 3. .—

12Sections 3 to 5 were compiled on the basis of data-obtainedby
. N. M. Pisarev.
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.
We shsll now take into account the structural nonlinearity of the

equations of convection and solve the problem more strictly. We shsU
choose a cylindrical system of coordinates such that the Z-axis coin- .
tides with the channel axis and”is in a direction op~site to that of
the acceleration of gravity. The initial azimuth is chos.egarbitrarily
on the assumption of the absence of transverse temperature_gradients far
from the channel. The initial equations of gravitational.convection in
cylindrical coordinate form for the steady regix are the~ollowing
(ref. 1 of ch. 2, p; 50):

The Navier-Stokes equations: =..

avr Vq

‘rxF+F

(a%rv—
232-2

The Fourier-Kirchhoff equation:

‘rx%++xv~x%+v’ ‘%

+

(a2vqv—
ar2
+&a’+!!#+;x”.a~.,

aq2

(a2vzv&2

.

(15.1)

(15.2)
.

.



NACA TM 1407

.
The continuity equation:

In correspondence with experimental results (ch. 11), to go over
from the equations in p~tisl derivatives to ordinsry equations (in
total derivatives), we assume the following dependence of the axial com-
pment of velocity on the vertical coordinate and on the azimuth: -

‘++’:1 fo+flcosq+f2cos2q +*.. )
(15.4)

ln this expression the first factor determines the dimension of the ve-
locity. In the second factor the nondimensional com~nent a deter-
mines the intensity of the convection phenomenon in the section z = O
(it has the sense of the Reynolds number). The second component deter-
mines the assumed linear dependence of this intensity on the coordinate

+
z (ch. 11, sec. 1). At the ssme time this component contains the non-
dimensional “nonlinearity parsmetert’ h. For h= O we have the lin-

S esrized problem, solved in the form of the “fundsmentsl” equations of
a
l-l chapter 3. In the third factor the velocity is expanded in a Fourier

&
series in multiples of the azimuth and contains the required nondimen-
sional functions only of the radius r-fO, fl, fz, . . .

Making use of the considerations of symmetry and by analogy with the
preceding, we write for the radisl component

‘h(Fo+F1cos~+F2 COS2(P+ ...)‘r=~ (15.5)

Similarly, we write for the azimuthsl component

“h(~sinq+@2sin2q +...)‘9=E (15.6)

From considerations of symmetry *O = O, the absence of uniform rotation

of the chsmnel fluid about its axis is assumed. In the linearized case
the radisl snd azimuthal com~nents were zero, since we had h= O there.

The continuity equation gives

vh

[
~F~+$ F. +

(
F,+* FJCOSQ+(F, ++ F2)COS2Q+ ...]+

1—x ‘+(*1 COSQ+24$2COS2Q+ . . .)+r (15.7)

+h(fo+fl cosqJ+f2cos 2Q+. ..)=O



124

whence the following relations are obtained:
.-

~f=oF~+~FO+R O

Fi+~ Fl”+~*l+~fl=O

F1(0) =41(0)
“1

NACA TM 1407

..

(15.%)

. . . . . . . . . . . . . . J
Owing to the presence of a boundary layer,

FO(R) = F1(R) =@I(R) =@2(R) = fo(R) = fl(R) = f2(R) = . ~. = O (15.9)

Substituting the assumed expressions (15.4) to (15.6) into the Navier-
Stokes equation (15.1), gives

(){~2(Fo+F~cos Q+F2COS ~.+ . ..)x -

(F~+Ficos~+F~cos2~+. ..)+
.

~(~1 sin q + *2 sin * +---..) x

(-Flsin q-2F2sin2Q-. . .)-

-*(@1 sin Q+@2sln2Q +.. .2 =)}

1 ap

{

v2h F,,+ 1--
pxa+T o TF6 -2 F+-”r2 o —

(15.10)



NACA TM 1407 125

●

✎

(){*2( FO+F1COSQ+F2COS2Q+ . . .)(*i Sin Q+%sin2Q +...)+

~(*lsin Q+*2sin2q+000) (*l COSQ+2@2COS 2Q +...)+

(FO+FICOS Q+ F2C0S2Q+. ..)(~ sinq+*2sin2Q +...) =

~F sin Q-~z 1 ‘F sin2Q +...# 2
}

(iy h(s’+.;)f%

(15.11)

(f~ + fi COS

+l?lcos ($+ F2cos2(p +-. ..)X

(p+ f;cos2q +...)-

~sin2q+. ..)x

(f~sinq +2 f~sin2q +...)+

*(%) + fl COG q + f2 Cos 2(p+.. .)2)=

Equations (15.10) and (15.11) do not
vertical coordinate z; t-nerefore,

-1

(15.12)

centain members depending on the

Y —.

(15.13)

—
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It follows that the expression ~p/az, encountered in equa~ion (15.12),
.

does not depend either on the radius r or on the azimuth.9 but de-
pends only on the vertical coordinate z. By analogy with the previously
discussed case of the superposition of free and forced convection in

.

correspondencewith equation (5.33), we assume

ap
—

= - pg@Az _ (15.14) .
z

Differentiating equation (15.12) with respect to the radius-”r, we elim-
inate the pressure p. To facilitate the computation,we first trans- ~

form this equation by carrying out the multiplication and &ouping the
terms with the same function of the azimuth, where we consider the fol-
lowing relations:

2sin2q=l-cos2~

2 COS2 (p= 1 + Cos 2q
1

2cosq)x

2sinqx

In this way we obtain

[

fIl+Afl-Lf
1 rl r2 1

[

f;+~f.l.kf
r2 r2 2

1 0

~%% +: fofz +

}+C1COSQ+C2COS29 +... +-g~Az

(15.15)

(15.16)
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Further,

where the

r of the

(15.17)

{}

t

symbol denotes the derivative with respect to the radius

expression ~n braces in equation (15.16). Further the ssme
symbol will be applied to the following derivatives of the same expres-

$
~

sion, with respect to the radius and the azimuth.

We now substitute the obtained expressions in the Fourier-firchhoff
equation (15.2), so that

*(Fo+F~cos Q+F2COS2Q+ . ..)

.2(s.;;:){ } +

r

+@2sin2Q+ ...)
.Z(a:;:){ }+

Q

flcosQ+f2cos21$+. . .,~+~{}]=

}:+${};+${}:l

(15.18)

After dividing, this equation is rewritten as

{}:+: {}:+* {};-W’O
@f+ f1cos(p+f2 cos2q+ ...)-

+x

[ {}
:*( fo+flcos Q+ f2cos2Q +.. .) -f-

{}

!
~(~sin~+ @2sin2q +...) +

[ }1

1

(FO+FICOS Q+F2COS2Q+ . ..) =0
r

(15.19)

. In view of the great complication of the equation obtained, it is
hardly worth while to interpret the equation in its genersl form..--— —

I
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4. Case of Axial

We shall now dwell on a particular
its evident simplicity. We assume that

NACA TM 1407

.
Symmetry

case which is dist~nguished by .
the entire phenomenon is

metrical about the Z-axis. This case is experimentally observed
the heater that heats the model (e.g., fi,g.-II). In t~s case

fl = f2s..

)

.=Fl=F2=. ..=@l -*Z= ..o=o

2h- —

7+0

%=0

sym-
within -

}

(15.20)

Only two nondimensional functions of the radius, ‘o and Fo} are re-
tained. Equation (15.19) is then rewritten as

(15.21)

It can otherwise be expressed in the following form:

Mfo - ,4fo=j&[*fo(f, +; ,,)+

(
F. f~’ +=lf;_+f~

)1 ( )
+ + F~f~ + Fof~ + ; fof~ +

( )

zffll+;f~z -F~f~ + 2F~f; + Fof~’+ ~ o 0

.
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where there was set

f;v + :f&L ~f’=Mfo~2f5+$ o
1

v
=PrF }

(15.23)

1# _ @A
Vx J

From equation (15.22) it is seen that if h= 0, we have the previously
discussed case of the “fundsmentsl” linear equations (3.9). However, if
h is different from zero, it is necessary to solve the nonlinear
equation (15.22).

Applying the method of successive approximations for
we expand f. and F. into sums of unknown functions of

in powers of h:

Substituting these expressions in equation (15.8) gives

g~++go+l E*O=O

~i+*gl+*vl=o

1

.

this purpose,
the radius r,

(15.24)

(15.25)

. . . . . . . . . . . )
Substituting equations (15.24) and (15.25) in equation (15.22) and
equating the coefficients of like Wwers of h, we obtain the following
set of equations:

W*O - k4~o = O (15.26)

(15.27)
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+ + + +

(15.28)

discussed linearized
obtain a system of non-

Equation (15..26)agrees with the previously
case, equation (3.9). In the other equations we
homogeneous linear biharmonic equations in the unknown functions *1J

~z~ ● .. . On the right sides of each of these equations, functions pre- +
viously defined from the preceding equations appesr. m flqctio?18 *
and ~ are even functions of the radius. The equations must @e inte- ...
grated under the general known boimdary conditions: Each of the func-

—....-

tions must be finite, continuous,”and single-vdu~dj it sho@d give zero
.

in the boundary layer at the chtiel walls and should satis~ the con-
dition of “closeness.” For example:

R
2fl

J
$lrdr=O (15.29)

o

Equation (15.26) in regard to coinciding with the “fundamental!’
equation (3.9), should give the following solution for axial symmetry
the closed channel:

[

Va ‘o(i&)

1)

Jo(kr)

‘z = T=-=

in

m= 4.611

(kR)4= 452.1
J

(15.30)

.
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.

.

Whence by equation (15.8) for the radial comwnent, we obtain to a first
approximation

(15.31)

By substitution it can be confirmed that this rsdial compnent gives the
value zero at the wall of the boundary layer (for r = R).

In computing the functions ~1, *2, ... from equations (15.27),
(15.28), and so forth, the following feature is revealed. The general
solution of equation (15.27), for example, is the sum of the solutions
of an equation of the form (15.26)(homogeneous) and of any particular
solution of the nonhomogeneous equation(15.27). The first compment of
this sum satisfies the condition of closeness (15.29). The second com-
ponent, however, may receive the following form. It is necessary to
represent the required psrticulsx solution and the right side .ofequa-
tion (15.27) as a series of suitable orthogonal functions. By equating
the coefficients, the coefficients of the required series are found.

In the given case, the suitable orthogonal functions are the Bessel
functions of the first kind of zero order. They easily give zero at the
boundary snd therefore already satisfy the condition of the boundary
layer. They likewise satisfy the conditions of finiteness, continuity,
and single-valuedness. However, the obtained series will not always
satisfy the condition of closeness (eq. (15.29)) but will satisfy only
for a single vslue of the fluid parsmeter Pr. Because the right side
of equations (15.27), (15.28), and so forth, are linesr functions of
this parsmeter, the required series and the condition of closeness will
likewise be the same linear functions of the parameter.

Whether this single (real.)vslue of the parameter Fr really exists
(in particular, as a positive qusntity) or whether it requires fatastic
fluid properties is a question that is as yet not clear. However, the
value of this parameter, obtained with the aid of equation (15.27), will
certainly differ from the value of this parameter obtained with the aid ‘-
of equations (15.28) and so forth. As a result, a contradiction is
obtained.

In this way we arrive at the almost cert~n result that in the sxi-
symmetrical case (eq. (15.4)) the propmtionslity of the vertical com-
ponent of the velocity Vz to the binominal (1 + h z/R) is actually not
realized. Similsr cases and cases experimentally observed correspond to
some other nonlinear dependence of this vertica component on the ~er-
tical.coordinate z or to some other value of the parameter kR, dif-
fering from 4.611 (eq. (15.30)).

.
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The hypothesis (eq. (15.4)) applied to the ..axisynmetricalcase may
.

be considered no more than a very rough initial approximation. Further
on, several.computations making use of this hypothis will be given, but
the significance of the conclusions from these computations should not

.

as yet be exaggerated. —

In view of the complicatedness of the process of the solution of
the preceding equations, it is desirable to clarify important physicsl
questions by which this solution is avoided. Perhaps the most imprtant
question is that of the thermal conditions on the boundar~es at the

&

channel walls, which sre the cause of the nonlinesr phenomenon pre- P
viously described.

Let us multiply each term of equation (15.2) by an element of vol-
ume r dr d~ dz and integrate between the limits of a la~r of the
height R. The last term on the left side will then givej considering
equations (15.20) and (15.18),

where the first term in brackets is equal to
ness” of the channel. The first term on the
(15.2) will give

A

(15.32)

zero, owing to the “closed-
left side of equation

1~ the last integral is integra@d by parts, we obtain ~

r dr

(15.33)

(15.34)

.
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The substitution here vanishes because of the presence of the boundary
layer. The transformations are made on the basis of the continuity equa-

S tion, in particular equation (15.8).

Thus, both remaining terms on the left side of equations (3-5.2)to
(15.18) are equsl to each other. The physical sense of the expression
(15.32) is defined as the heat transferred per second by convection up-
ward from a layer of height R. The physical sense of the equal ex-
pression (15.33) is that it is the heat trsmsportedby the radial veloc-
ity component from the periphery to the inner parts of the fluid.

After integration, the right side of equations (15.2) to (15.18)
gives

IRd’2’&Mrh “ ‘z=‘x2fiR2(R)=’“--(15.35)

where the Ostrogradsky-Green’theorem was applied. The entire equation
(15.2), after integration

..*Y
‘o

and substitution,

‘o
{}

r dr =-21-rR2x

gives

(15.36)

whence, the psxameter of nonlinearity h is determined as

[01

1

h
Xxgx rR=--
v 2 flR {}

(15.37)
.

On the other h-d, the heat transferred by convection through the section
z upward is equsl, by virtue of relation (3.23), to

f

R
Q= pc2m vzer dr =

o

(15.38)

I
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The term with A drops out because of the “closeness” of the channel.
a

Over the distance of one centimeter of the channel height this heat in-
creases by the smount #

(1.5.39)

Substituting this
gives

and

The last equation

expression in relations (15.3.5),(15.36), and (15.37)

-,.~w[{}q.c--(%)=R (15.40)

‘=+%‘“
(15.41)

connects the parsmeter of nonlinearity h with the

*
N

~

experiment&lly observed intensity of the heating (or the heat losses)
through the channel walls.

The following futher circumstance must be.considered~ The ex-
k

perimentally observ~le vertical gradient on the periphery_of the channel
cross section differs from the mean gradient A which plays an impor-
tant part in this theory. In fact, limiting ourselves to the first term

.

of the expansion (15.24) and making use of formula (15.16),we find

(15.42)

Further, taking into account formula (5.38) and substituting in place
of $0 its expression in terms of the Bessel functions (5.35) to (5.36),

we obtain
—

()~ER=A -“@& (A*O)ER=

[

~2~2 JO(ikR) 1JO(kR)
=A-—

v2h(kR)2

g~R2m+w=A ‘2 g~R4

[
=Al

1[
-2Prx—

2Pr x h

(:)2
=Al- 21.3 1

-.

(15.43)

.
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For water at a temperature of about 20° C, Pr = 7. Substituting, we
obtain

.

(15.44)

where the term in brackets represents the relative decrease of the ex-
perimentally observable peripheral verticsl temperature gradient as com-
pared with its gradient averaged over the section. Hence, for a certain
vslue of h it may be found that this gradient is equal to the verticsl
gradient which corresponds to diametral antisymmetry. This is obtained
when

For glass models (kR)~im s 1(X);(kR)4ui~= 452.1; whence
-.

( 100 )h=~l-— 452.1 - 1.17 (15.45)

. For this reason, in the case of an annular heater coil wound directly on
the glass, the convective flow spontaneously changes from dismetrally
antisyuunetricalover the heater into axially symmetrical inside the
heater. The last equation (15.45) hardly reflects accurately the value
of h (it may be expected that actuslly the corresponding value of h
is less), but the phenomenon evidently has this chsracter.

5. Case of Dismetral Antisymmetry

As a second example, let us consider the more complicated case of
dismetral antisymmetry of the fundamental flow, previously qualitatively
described in chapter U.

Because all three coordinates now play an essential part, it is
necessary to make use of the esrl&er derived equation (15.19), in all
its complicatedness. However, since o,nthe basis of the experimental
results of chapter 11 the antisymmetrical form must be considered as the
basic form of the phenomenon, we now assume in equation (15.4) in place
of equation (15.20),

(15,45) -_

-.
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There is then immediately obtained from equation (15.8)
.

F. << Fl >> F2 -

*1 >> *2
(15.47)

Since for h = O all the enumerated functions vanish except fl, we ~
a@y a new notation, and in place of

‘o’ ‘2’ ‘o’ F2, and *2

we shsll write
---

hfo, M2, M?o, hF2, and M.
Ii

Moreover, we set

fl = to + hwl + h2W2 +

Fl= go + hgl + h2c2 +

@1=~+~+h2~+

The expression in braces in equation (15.16)

. . .

. . .

. . .

then becomes

(15.48)

.

+%+.. .)(*O+W1+ . . .) -

. .

.
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(15.50).

C2 = bf; + :f; - ~fz-: [
h%of ~ + h2F2f~ +

~(qo+hql+...)(~~+h~i +...)+

zhz
&(~+~+. ..)($o+hyl )...) +~fof2+

(15.51)
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.

Substituting these values in the Fourier-Uchhoff equation (15.19), we
obtain the successive coefficients for the different trigonometric func-
tions of the azimuth in the following form:

.

For cos O:

C; +: C’ - k4hf0rO [
-PrX*~foCo+ -

1
;(~o+hgl+. . .)ci+; m2c4 +. . .= o

(15.52)

—

b

(15.53)
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. In these expressions the auxili=y fwctions co} CIY ~d C2 in the
new notation have the following meaning:

~z
~ F2f~ -*(~ +~+. ..)!o+h *l+”+” ““) -.. .

(15.55)

cl = [
‘hFo(~~+h~i+...)+A($o+hVl+ -----~

2 hfobko + hyl + . . .) +
1h@2(~o+h~1+. ”-)+R
5

:(’% + hvl + . .
.)f2] = A(Yo+hyl +..”)-

)*@2$o+:fo*o+**of2 +. . .

.—

(15.56)
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[
+’+h 2Ff~+h Z’fC)

C2=hAf2-Fh o

.

.

~(~o+hgl+”.*)(v~+h$i+ . ..)+

~(%+%+....)(~o+ht)+...)+ _

Now, grouping the terms of equations (15.52) to”(15.54) with the same
power of h, we obtain the following:

Terms not containing h: .

M*O - k4~o = O
—
— (15.58)

Terms containing h to the first power:

M~l - k4$l = O ._ (15.60)—.

(15.61)
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.

The remaining equations have a more complicated form. In equation
(15.58) we recognize the “fundamental.”equation. The remaining equations
enable the computation of the functions fo and f2. We note that the
correction to ~. is found not’to be below the second power of h, since
the equation for $1 does not differ from the equation for *O md

therefore does not give “corrections” to the last function. That is, we
may assume *1= o.

The vsrious functions encountered in these equations are connected
with each other by the continuity equation which, in the new notation
considering equations (15.8) and (15.48), is written in the developed
form:

(15.62)

In addition, it is also necessary to beer in mind the following re-
. lation. If equation (15.10) is differentiated with respect to the azi-

muth, and equation (15.11) is differentiated with respect to the radius,
we obtain the following

azp
$’-=

two expressions for azp/&aQ:

v2h

( )
-AFl+~@lsinq+. . .K r

}

(15.63)

(
$%;.~

)
~F sin~+ . . .‘i+~ 1

where only the terms with the factor h sin q have been retained.
Hence, in the new notation, the terms containing the first power of h
have the coefficients:
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Substituting ~ from equation (15.62) in equation (15.64), we obtain

(15.65)

The solution of this system of equations must be-used in the right sides
of equations (15.59) to (15.61).

From this it is seen how laborious is the work on the solution of
the nonlinear equations of gravitational convection even within the
limits of the first approximation (i.e., the first few powers of the non-
linearity parameter h). However, the method of.solution that leads to
the solution of a system of linear equ&tions gives a clear~erspective
of how the result is to be attained.

In conclusion, it is useful to remark that the order o_foperations
which is presented here evidentw saves a maximum of computational work.
It would perhaps have been more strictly logical”to have @e a substi-
tution of the different powers of h directly in the initial hypotheses,
equations (15.4) to (15.6), and not in equation (15.18) as was done in
equations (15.18) and the following. What ha& been done he~>erepresents
a double introduction of the same small parameter h. The results ob-
tained by both methods are the ssme (sec. 2).

.

6. Convection in Horizontal Channel of Rouhd Cross Section13

As a third example we consider the plane convective motion of a
fluid arising in an infinite horizontal.channel of round crissssection
bored in an infinite homogeneous 6olid surrounding block. In this block,
by means of heat sources and sinks situated at M infinitely large dts-
tance, a temperature gradient constant in time is produced perpendicular
to the channel axis. At a great (as compared with the chamiel dismeter)
distance this temperature field is homogeneous. In the nei@borhood of
the channel this homogeneous field will be distorted. For a-stationary
fiuid the distortion will be in.its molecular conductivity, and for a
moving fluid the distortion will be in its
molecular conduction.

13This section was compiled from data

convection as well as in its

—.—-- —
obtained by E. M~-!Zhukhovitski.
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.

We choose the axes
conditions of symnetry,.

of coordinates as

143

shown in figure 49. By the
..

‘z = o

%=0
bvy avx
x=7E-=0 }

The equation of a streamline has the

. dx—=
Vx

Vyti - vxdy

and, in polsr coordinates,

drl
—=

. ‘r

(15.66)

form, in Csrtesian coordinates,

(15.67)

(15.68)

v@rl - rlvrd~ a dY = OJ
.—

where the symbol ?’ denotes the stream function. .It is evident that

%= -Vy

by
F

. Vx

~= -VQ

1 aY = Vr
~a :

(15.69)or
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This transformation is possible if dy in equations (15.67) or (15.68)
is a total differential; that is, if

The preceding
Cartesian and

.

.

(15.70)

equations coincide
polar coordinates,

_.
with the equations of continuity in
respectively: E

(15.71)

Thus, the introduction of the stream function is admissible.

and
The

The streamlines are characterized, according to equations (15.67)
(15.68) by the fact that along them dY= O (i.e., Y=_constant).
greater the velocity, the more closely packed are the streamlines. .

In order to use the Navier-Stokes equation ‘fidto eli~nate the
pressure gradient from the equation by applying the curl o~ratorj we

—

compute the curl of the velocity:
.

\
dv avy

[v%]x=&-K=o

(15.72)

Applying the curl operator to the Navier-Stokes equation we.obtain

- [v[~[~l11 = vA[@ + B[Wg] (15.73)

Substituting equations (15.69) and (15.72) in the preceding-equation,we
obtain the following scalar
equation (15.73)):

equation (the component on the z-sxis of

()
aay

-zx~ ‘“v--@E “-
(15.74) -

.
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.
or, csrrying out

.-i
a)
N
d

the differentiation and

~xbY aT x&y—-— —=
dy dx dx dy

145

multiplication on the left side,

v&Y - g~ g (15.75)

The Fourier-Kirchhoff equation is now rewritten as

(15.76) “–

We pass to polar coordinates by means of the following well-known x
formulas:

The system (15.75) and (15.76), expressed in polar coordinates, thenm
A reads

cos(p+. l )~sin (p

ay

)
-q”% =W10

~

(15.78)

The continuity equation has already been employed in forming the strew
function Y. It is assumed that the equations have been parametric~ly
linearized (ch. 2, sec. 2).

We have obtained a system of partisl differential equations of a
higher order (of the fourth order in T and the second order in e),
nonlinesr but homogeneous, and with constant coefficients (within the
limits of parametrical linearization). It must be solved for those--
boundary conditions which were specially considered previously (ch. 4,
sees. 1 and 2}. With the introduction of the new ftictiori””Y these
boundary

.
conditions are formulated as follows:

(1)
tions Y
required

Within the cross section of the ch=el (0 s rl S R)) the func-

ad 6 are finite, continuous, and single-valued, with the
number of derivatives.
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●

(2) At the wall, for rl= R,
—

there is m“adhering b&ndary layer
of the fluid (eq. (15.69)):

by so()

}

.
~ rl.R

()
(15.79)

% ‘0rl=R

(3) Within the boundary layer there are no jumps of temperature and 8

of heat flow:

(4) In the neighborhood of the channel there areno”h~at sources -
and no sinks:

Aee=o (15.81) .

(5) At infinity, the temperature gadient i13given as’””

(15.82)

For convenience of solution and without restricting its generality (since
only derivatives are encounteredin the equations); we assume that. Y
vanishes at the wall:

(y)rl=R= o (15.83)

To simplify”om”further discussion, equations (15.78).willbe reduced to
a nondimensional form. As a scale for the length we shall ~hoose the
channel radius R, ahd as”a temperaiu?iescale we shall choose the product

~R =’R~-’ (1.5.84) ““”““
.
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.

Moreover, we set

Oa
t+

rl =Rr

y(rl,~) = xF(r,~)

1

(15.85)

The connection of the stresm functions in terms of x and not v, as
would be expected from the form of the equation, is determined by the
convenience of the further computations. Here rl denotes the ordinery
radius, r the nondimensional radius, Y the ordinary stream function,
F the
fl the
entire
sional

nondimensional
nondimensional
nondimensional
parameter ~4,

At!

Because ~ denotes

tion (15.84), # is

It is useful to

t

(

stream function, @ the ordinary temperature, and
temperature. After reduction it is found that the
system is now determined by the single nondimen-
having the criterional value

(15.86)

the sxithmeticsl vslue of the square root in equa-

assentiallypositive, since ~ is usually negative.

>bserve that though the parameter # a relation
is established between the mechnical and them”sL aspects of the phenom-
enon: The absence of thermal phenomena (Ao = O) or the absence of their
effect on the mechanical side of the process (for B = 0, v = = or
-%= =) leads to the value & = O. This value corresponds to the fact
that both equations of the system of simultaneous equations (15.86) are
converted into independ~t equations that do not constitute .asystem.

It is slso necessary to remember that, in virtue of the =sumptiog
of parametric linearization of,equations (15.86), they automatically-be--
come invalid for large values of “#. For this reason, it is desirable

I
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to seek a solution in the form bf a series developed in @-wers of d.
We set

\

F= &F(l) + #F(2) + . . . I

F(o) s () . I
J

The essential idea of the process of solution is that the ~l~tions in
,theform of the series (15.87) are substituted in the equations of the
system (15.86). By ccsmpsringthe coefficients of equal powers of ~4,
equations of the following form are obtained:

~(n) . f($(a); F(l)) d(l)j F(2), 4(2); . . . ““
)

. . ,; ~(-1), +j(n-1)

}

(15.88)
A4(n) = fl($(o)j F(l)) $(l); F(2)) #(2)j . . .

. . .; F(n-l), ~(n-l))

The functions f ad fl embrace the functions F and ~- of differ-

ent indices, as well as their.lower derivatives. The first~equation of
these equations represents a two-term biharmonic linear equation with
constant coefficients, nonhoniogeneous,containing the already previously
defined known functions on the ri’ghtside. The second equation repre-
sents the elementary hazinonicequation of Poisson: In principle, there
are no obstacles to the solution bf these equatiogsj a solution always
exists. In regard to the solution of these equations, the ~ollowhg is
useful (ref. 1).

.

.

.

hy function Fo~ satisfying-the homogeneous ~iharmoni.~equation

AAFo=o (15.89)

can be represented in the form

‘o =.fl + r2f2 (15.90)

where fl and f2 are harmonic functions. Any harmonic ftiction f,

finl.teinside a given circle of radius r = 1, csiibe preseri%edin the
form of the series.

.

f= ~ rn(~ cos nQ + bn sin nQ) (15.91)
n=o .
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.

Hence, the solution of the homogeneous bihsrmonic equation (15.89) can
be presented (in finite functions) in the form

.-

F=~[rn(an cos n(p+bn sin m) + #+2(ati cos n~ +bti sin n~)]
n=o

(15.92)

Further, we note that
l-lal
3 M(ra) = a2(a _ 2)2 ra-4

)

M(ra cos nq) = (a2 _ n2)I(a - 2)2 - n2Jra-4 cos nq
}

(15.93)

M(ra sin n~) = (a2 - n2)[(a - 2)2 - n2]ra-4 sin n~
J

The solution of the .nofiomog~eous equation (15.88) iS the SUIU of the
solutions of the homogeneous equation (15.89) and a ptiticular solution
of the nonhomogeneous equation (15.88), where the sum must satisfy”the
boundary conditions. The requirement Y(R) = O (eq. (15.63)) was introd-
uced to simplify these boundary conditions.

Applying these considerations to
dimensional temperature 4, we srrive
that in place of equation (15.93) the
simple:

the hamponic equation for the non-
at the same conclusions, except

—

expressions obtained are more
.

.
A(ra) s a+-z

A(ra cos n~) = (a2 - n2)ra-2 cos n~

“}

(15.94)

A(ra sin n~) = (aa - n2)ra-2 sin n“~

In order to satisfy the boundary conditions of equations (15.81) and
(15.82), we set

*&o) =Arcosfp+
%) %

r sin Q

n = 1, 2, 3, .

We shall use these preliminary
where

cos m~ + ~ sin m$)

..)

(15.95)

. .

commutations for the particular case

.
aeeH~1- sB=()

A=AC) }
(15.96)

I
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that is, where the heating proceeds only laterally and the vertical com-
.

ponent of the temperature gradient is zero at infinity. The substitu-
tions and computations give the following results:

Zeroth approximation:

First approximateion:

( )~(1)= 1 l+r2-;r4

()
161++

e

V~l)= Oj ‘V~)=~X ‘4

()

r(r2 - 1)
81++

e

!(15.97)

115.98)

1+

N
I-J

.

,



.

.

.
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Second approximation: \

Mr2(-11 + 24r2 - 15r4 + 2r6)sin 2Q

x 8 ~(_~ + 24=2 - 15r4 -1-2r6) cos 2Q
~E

1
##2Mr(-U+48r2 - 45r4+8r6) sin20 ‘

{[

(15.99)

A&M r (-al + b1r2 - clr4 + dlr6_ er8) x

2 + c2r4 -cos w + r2(a2 - b2r d2r6) cos 3
3}

( )
b3 ~ COS 39-AR~8M$ a3 C06 Q -

In formulas (15.99) the following abbreviated notations are used: .

v(l) + Vy + . . .‘r= .r

m+vp+...
‘f$ = ‘~ }

(15.100)

.

1
X2

()
–=1843201+~
M e

()

2

101 + 4-26~ + 153 ; 109 + 229 &
k

11.+16~

e
; bl = 2jcl

=4X
al = 3

2

()
41+?

()
21++ “(’+::

e e

3 3 1
b2 = —“ C2 = .d2=—

x’
1+;’

()
21+~

()
61+:

e e e

16 - 27 $
A 1

a3=~x .b3=~x3? 2
e

()

e
1+$

()
31+:

e e

(15.101)

c

I
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Similarly, the
plicated form,

third approximation, which will @ave a still.more com-
.

may be computed.”

Judging from the physical side of the conv=ctloh procesk described - “
by these equations, a value of the parameter ~? of the system (15.86),
for which it would not have a finite solution, does not exist. There-
fore, in analogy with the case of heat transfer.through l~ers, it must
be assumed that no restriction on E4 are imposed within:.thelimits of
the parametric linearization. The power series (15.87) converge cer-

4 > 1, these solutionstainly only for the values .&< 1. Hence, for” ~ s
may give divergent series. However, from the ex~ple com~ted previously ~
up to the second approximation, the practical convergence-of the series
(15.87) is very strong. Apparently, the limits of applicability of the
solutions in the form of the series (15.87) may thus be reliably decided
only by experiment.

The obtained solution,permits the following physical ~nterpretaticm.
In the zeroth approximation no motion of the flu~d is alleged (i.e.,
there is no convection). The fluid filiing the channel behaves ther-
mally as a solid body, with a different heat conductivity from that of
the surrounding mass (typical problem of the theory of the--potential).

As a result of the temperature distribution,which co&esponds to
—

the zeroth approximation, a very simple form of the convection currents -.
arises in the first approximation; namely, the circular form (eq.
(15.98)). The fluid rises along the hot wall w-d descends-along the
cold Wall. The streamlines are closed circles.‘The radial component of
the velocity is zero. In the central part of th~”channel me fluid ro-

--

tates almost like a solid body. ‘In connection with this m~ti.ona verti-
cal temperature gradient arises in the channd afidin the c%annel neigh-
borhood (through sin Q), the gr&itationaJ.-thermaleffect (ch. 16,
sec. 1).

As a result of the addittori&lchange in temperature,~ch is de-
scribed by the first approximation, a radial component of the velocity

-.

arises in the second approximation (eq. (15.99)), and the temperature
field becomes rnore’complicated~ A dependence on-three times the polar
angle
radial
motion

if the
if the

(p occurs. Because M is very small, of:the order gf 10-5, the
velocities attain the same order as the velocities of the circul~
of the first approximatiorifor the values

&l = Gr x Pr s 2X105 (M.102)

chsmnel radius is taken as”the determiniti dimensiori~
—.

However,
dismeter 2R is taken as the determining dimension,as is done

in engineering computations, the “engineering!’~alue of the..criterion
will be .

GrPr = 3.2x106 (15.103)
“
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.

This number is close in value to that which corresponds to the bresk in
the curves of the heat transfer through Uquid films (fig. 25, curve

. 111). This fact justifies the application on only two terms of the
series, which thus evidently actuslly converge rapidly. Hence, it is
necessary to assume that the accuracy assured by the second approximation

within the range O < ~4< l& is very high.

For comparison with experiment, figure 50 shows the isolines of
equal gradient computed by the preceding forqulas. Qualitatively, these

——

isolines correspond satisfactorily to the photographically obtained
lines shown in figure 45A. However, fuller correspmdence is obtained
with figure 45B. This photograph shows the isolines which are observed
in the ssme optics3 model if the heater”and cooler are not placed to the
right or to the left, as corresponds to figure 45A, but are placed at an
sngle of 45° to the vertical, as indicated on figure 45B. The reason
for the better correspondencemaybe seen from the following considera-
tions. Because of the limited linear dimensions of the model (which are
only three times greater than the cavity dimension) under the conditions
of figure 45A, the vertical temperature gradient (hotter upwsrd) is not
proportionally large by comparison with the theoretical case of infinite

8 surrounding mass. Under the conditions of figure 45B this verticsl gra-

d
clientis somewhat concealed by the oblique displacement of the heater
smd of the cooler. Hence, the actual conditions approach those which
corres~nd to the th?ory (horizontal gradient in an infinite surrounding
mass).

The deviation of the theory from experiment must further be ascribed
to the random value of the parameter &4 and to the random ratio of the
heat conductivities assumed in the computation (A/kc= 0.0083).

The further working of this exsmple also gives the hope of tivesti-
gating the convection in an inclined channel, perpendicular to the hori-
zontal component of the temperature gradient. The results of the com-
putations must be compaxed with the results corresponding to the ssme

-.

effective direction of the gradient, the ssme ratio of heat conductiv-‘=
ities, snd the same value of the parameter .& as those assumed in the
computations. -——

7. Convection in Spherical Cavity14

In an infinite solid medium with coefficient of heat conductivity
~, let therebe a spherical cavityof raiiius R filled with an incoin-
pressible (but thermally deformable) fluid with heat conductivity k,
heat capacity c, snd coefficient of dynsmic viscosity K, all independent

14The present Gection is compiled from data obtained by E. Drakhlin.
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of the temperature. Let the temperature”gradient A of%he medium at -
infinity be given as constant in space.and time. We shall find the tem-
perature distribution in the fluid””e(x,y,z) and in the sdlid medium .
8e(x,y,z), and the velocity dis~ribution in the fluid v(x,y,z). The
origin of the Cartesian coordinates X,y,z will be taken at the center
of the sphere.

We introduce the following notations.
.-

iet”””t30 be the volumetric

mean value of the temperature; P. s PO(eo) the fluid density in equilib-
rium, p s P’-PO; P. ❑ po(eo) the pressure in equilibri~~ .P’a p-po; let

&.
m

p’ << PO. We shall restrict ourselves to the first approximation for P
—

The temperature and the second approximation for the veloc”~ty:

v =V(l) +V(2)
-. I

(15.lo4)

In the zeroth approximation the fluid is assumed to be stationary.

The boundaxy conditions bve the following form: -

(M. 105)

—.

where r denotes the radius vector, r2 = X2 + Y2 + Z2. Considering the
conditions of symmetry, we assume,that the stres@ine8 lie & planes
parallel to the plane determined by the direc~ons g and A. We.
choose this plane as the xy-plane and the direction of g as the direc-
tion of the y-axis.

We introduce the stream function y:

Vx=:
* )

‘Y = -2 }
(15.106)

b

.
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Eliminating the pressure (eq. (15.75)), we obtain the following equations:

. ‘*Ay=-’k(-+3)-$(a+~l’$x~”--(1507“’
U’e’ = as’ ae~

Vx ~ +VYXF (15.108)

where.the symbol A* denotes the Laplacian in the coordinates x and
Y:

32 32
A*=—

ax2 ‘p

In the zeroth approximation for the stationary fluid,

~I(o) so (15.109)

We solve this equation with the corresponding equation of the external
* problem
c1

; ‘s:(0) o (15.110) “
-—

=

$-
and with account taken of the boundsry conditions (eq. (15.105)). We
obtain the result from the theory of the potential (potential of a di-
electric sphere in a homogeneous field):

(ls.111)

(15.112)

where & sad ~ denote the corresponding components of the tempera-

ture gradient vec~or at infinity

In the first approximation,

‘*AT(l)

It is necessary here
pose we have the equation

@ ‘

A.

equations (15.107) ad (15.108) give

= @ ‘ s’(o)
v T

(15.113)
.—_

as’(0) (1) ~ af)’(0)
T+vy ‘~

(15.U4)
.._

to make a small mathematical digression. su-p-
A*~ = Q,’where Y(x,y,z) is an unknown
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function and
and let it be
conditions

We set

Q is a known polynomial
required to find hY/ax

T.

of degree N relative to x,y,z,
and %/ay for the boundsxy

(S)p,=(%)=,=0

.

(15.ll!5)

i%
CD
P

where i~n), i~n), j~n), $.$n),k~n), k$), and m are natural numbers,

running independently of each other through the Yalues 0, ~, 2, . . .,
and N+3. The number s is determtied by the”condition tkt on the
rtght sides of equations (15.116) and (15.117) all the com~nents of the _
preceding form, for which the sum of the powers of x,y,z,-md r con-
stitutes a series of natural numbers between the -limits2 ~d N+3, ,must
be present. It maybe shown that the expression (15.116) smd (15.117)
solve the proposed problem, if the coefficients

.
~ and bn are found.

For this purpose it is first fiecessaryto use the equation -A*AY = Q
and, secondly, the mixed derivatives of ~ expressed in tezms of ~
with the aid of equation (15.116)’and in”terms of bn

.
with the aid of

equation (15.117) must agree.

Applying the previously described mathematical device,”we solve
=.

equation (15.113), and find the components of the velocity ~eq. (15.106))
to the first approximation. The computations give —

(15.118)

It may be verified that in this approximation the streamlines are ..-
circles, parallel to the xy-plane.’

—

To find the temperature distribution in the first approximation,
we solve equation (15+114) with the correspondingvtion (15.110) of

.

.
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.
the external problem for the-boundary conditions of equation (15.105).
As a result, we obtain

.
,g’(1)= a1(z4x + x5 + y4x + 2z2x3 + 2Z2W2

a2(z2x + # + <) + a3x +

aL(z4y + @y + @ + 222X2y + 2Z2y3

a5(z2y+x2y +@) +acy

.

where

E@ ()Ae 2
imx x + 21e %&y

‘X*Y

~ ~3y2) i-

+ 2X2Y3) +

(15.120)

(15.121)

W-#4
xx

@ Ayx-Axy&) Lx V2 xx
= 350 (x + 2A# x r3 (15.122)

The finding of the temperatures and velocities in the second approx-
imation requires very laborious computations. The veldcityanents
in the second approximation are polynomials of the seventh degree in the
coordinates X,y,z. To obtain the coefficients in these polynomials it
was necessary to solve a system of 44 linear algebraic equations.

--

.-

—
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The
have the

finsl expressions
following form:

*(P1Z4 +

for the velocities in the secori-d

PZX4 + P3Y4 + P4Z2X2 + ~z2y2 +-

2 2 + P7Z2 + I?(3XP6X Y 2 + P9Y2 + Plo) x

.

NLWA ‘lML4U7

.
approximateons

I
.

J@ +-q2x4+q3y4 +(x2+y2+z2-l)x+2 *N
~

q4z2x2 + qszzyz+ q6x2y2 + q7z2 + q@2 + :

kJY 2 +-Q(-J)(X ‘2+y2+z2-l)y

12
—

~(r~z4 + r2x4 + r3# + r4z2x2 + r5z~y2 +-

r6x2y2 i-r7z2 + r8x 2 + r9y2 + rlo) x

21.
(Xz+yz+zz. l)x+ ~(slz 4 +:S2X4+s3p+

2y2 + s6z2y2 + S7Z2S4Z2X2 + S5Z + s8x2 +

S9Y2 + S10)(X2 + yz + Z’2- l)y .—

.

where there has been set

R=l

kl = 26 x33x, 5x7x llx13 =8,648,640 -
I

kz = 3x4x5x7x13x4919 = 26,857,740 : I

(15.123)

,,

I (15.124)
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=@ Pi) qi~ ri~ and si (i = 1,2,. . .,10) represent constant numbers

whose vslues sre given in table IX.
....-

The vslues of qlo and rlo are”.
given by

179,390 17X + 18Ae
qlo= ~ - ~800(h + 2A ) k2

e
17A + 18Ae

}

(15.125)
237,439 +rlo = -

8 2800(A + 2ke) ‘2

As an i~ustration of these very complicated results let us con-
sider as an example the case of heating from the side (Ay = 0), where
for simplicity of computationwe put (see eq. (15.121))

GrPr = 560

A=l

From equation (15.121) we obtain

al =a2=0

% 4=%= -a

a6 = +x
The further commutations show that in

}

(15.126)

(15.127)

this case the distribution of
the velocities (isol&es of the velocities) in any plane passing through
the z-axis (meridional plane) very strongly recslls the situation”con-
sidered previously (fig. 6). The msximd value of the tangential veloc-
ity component is found to be at approximately 0.6 of the sphere radius,
and is approximately equsl to 10.6 x/R for a value of Grl?r of 560.
However, in the second approximation the strqs@ines are not obtained as
circles but have an oval shape extended in the direction of the axis
Y’ x, ad are compressed in the direction of the ’&xis y = -x. On the
axes x and y the maximal value of the radial component is obtained
for the assumed value Grl?r= 560 on hslf the spher~ radius, and is
equal to A1.4 x/R.

The convective process in the cavity produces, in the surrounding
mass (within the limits of the first approximation),both
temperature gradient acting from without and the vertical

. (15.122)):

&)=- ~xq:13x @ ~ yR3g

350 (A + 2Xe)2 r3

the horizontal
gradient (eq.

(15.128)

.
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A spherical cavity
tensity is proportional
to the seventh power of

resembles a vertical
to the Square of the

J .

N4CA TM 1407

.
thermal dipole whose in-
external gradient Ax and

the radius of the sphere R. !Ihiaexpres~es the .
gravitational-thermaleffect of.convection (formula (15.9S)).

-
If followed in detail, it may be established that t~” entire course

of the computations previously given represents a nonexplicltly carried
out method of successive approximationsbased on the exparsion of the
solutions in powers of the Grashof number:

~r@.&
Vz

(15.129) “-

R
02
P

This fact appeqrs in the structuYe .offormulas (~.118) an~ (15.124). - - “-

The preceding example shows that the practical computation neces-
sarily leads to such a series. Therefore, it is very convenient to give
this series in explicit form at the very start of the computations,
taking Gr as the smell parameter of nonlinearity.
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CHAPTER 16

EXPERIMENTAL INVESTIGATION Cl?THERMKL CONVECTION

IN CAVITIES OF SPECIAL FCEIM

1. Statement of Probl~

A good discussion of the thermsl convective phenomena in an inftiite
horizontal slit between two solid planes is found in the literature (the
cells of B&ard, ref. 1, ch. 12). The main purpose of the present book
is to investigate the opposite case, thermal convection in a vertical

i-l channel. It is natural to connect these extreme cases with the inter-
&l mediate cases not only theoretically (ch. 15, sees. 6 and 7) but also
~ experimentally, namely, the thermal convection in a hollow sphere sad in
. a horizontal channel of circular section.

Both the previously discussed cases have great practical sigaifi-
cance. First, such cavities are often contained in the c~osit ia of
many heat insulating materials, either accidentally or by design. If
convection arises in the liqti or in the gas filling these cavities,
the effective heat conductivity of such insulating impregnaticm may be
found to be much greater than that found -fromthe magnitude of the molec-
ular heat conductivity of the liquid or gas. Although the effective heat
conductivity of the air inclusions is determined b structural practice
the question must not be considered as exhaustivel.ysolved, and it is’
necessary to determine more accurately the part played by convection in

.—

this problem.

Secondly, the convective heat transfer in such cavities possesses a
characteristic feature that requires detailed study; namely, that convec-
tion is characterized by the rising of the warm fluid particles while the
cold particles descend. Hence, as a result of convection = additional
vertical t~erature gradient necessarily arises; that is, the fluid is
warmer toward the top (formulas (15.98) ad (15.128)). This additional
convective gradient distorts the initial thermal field in the solid sur-
rounding mass that contains the cavities. A specific gravitational-
thermal effect srises (recallingthe well-known galvano-magnetic Hsll
effect). The passage of the heat flow through the porous body in a
horizontal direction is acccmrpanied“byadditional heat of its upper part
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and additional cooling of its lower part. The heat-flow vector ceases to
be collinear with the temperat~gadient vector, a vertical deviation
arising between them. Hence, the concept !teffectivethermal conductivity
of a porous mass” loses its sense as a scalar sad acquires that of a
tensor whose ccxnponents are connected with the gravity acceleration
vector.

This circumstance Is generally ignored in practice although its cor-
rect acknowledgmentmay result in the saving of msmy megacal~ries of heat
for the country. In the fol.lowtigparagraphs only initial experimental
studies, which have been conducted in this direction, are described.

2. Convection in Spherical Cavit~5

A divided model was constructed frcm a piece of Plexiglas of dimen-
sions 47 by 47 by 62 millimeters, shown h section in figure 51. Both
halves of the model were placed with their ground faces against each
other sad were hermetically compressed. Channels of about l-millimeter
diameter were drilled in the interior of the model. The double-insulated
wires of thermocouples of copper-cm.wbantanof approximately 0.2-
millimeter diameter were inserted in these channels in a msmner such
that the theroccouple junctions were located about 1 millimeter tiside
the spherical cavity. The channels with the thermocouple wires were
closed with wax. The cavity was filled with distilled water through the
channel K, of diameter of about 3 millimeters. The model was placed in
the heater coil n and was covered with cooler X (a brass vessel con-
taining ice and water).

In correspondencewith the scheme of figure 52, 18 thenncouple
Jumctions were arranged along the inside surface of the sphere. Their
coordinates, expressed in geographical language, are given in table X.
Further, thermocouples were located at the points A and B, immediately
on the heater under the cooler.

The results of the measurements are presented.j-ntable ~ and in
the cdmposite figure 53 corresponding to the eight different heating
power inputs. On each individual graph of this chart the temperature
is given as a function of the “longitude” of the corresponding thermo-
couple. The lties correspond to the same “latitude”: line l-corres-
ponds to the upper pole, line 18 corresponds to the lower pole, the
center line to the equator, and 60 forth. The lines A end B correspond
to the tanperatures of the upper and lower faces of the model, respec-
tively. An analogous temperature distribution was also cbtained by
mother method of measuring the temperature (an electrical.methcd, see
ch. 19, sec. 1).

,:
15This section has been compiled frcuttdata obtained by N. A. Pleshkov.

.

.

.

.
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The composite figure shows that the mean temperature of the equator

is not equal to the mean of the temperatures of the poles. The temper-
. ature of the equator is above the mean when it is below 20° C, roan tex&

perature, and is below the mean when it is above the roan temperature.

The temperature of the equator is higher thau the average of the
polar temperatures when the fluid in convective motion rises at the walls
and descends along the vertical sxis of the model. This phenomenon is
favored by the low mesm temperature of the entire mcdel as cmupared with
the roan temperature; the mdel betig heated not only by the heater but
also through the side walls of the rocm. When the mean temperature of
the model is higher than the room temperature the reverse phenomenon is
obtained.

The composite figure also shows that on the mean temperature of each
circle of latitude there are superposed waves, predominantl.ywith a period
of one rotation about the vertical dismeter of the sphere (for large heat-
ing powers a half rotation). It is possible that these waves also arise
as a result of the effect of the summund3ng circumstances (wtidows, heat-

g ing apparatus), since the tests were conducted in the winter and the mcdel

s was not heat-insulated.

&l
From these cms iderations the following preliminary conclusions may

-& be drawn:
—

(a) Thermal convection in these tests took place and transferred
further quantities of heat upward, in addi.tion to the heat trsnsferred
by the moleculsx conductIvity. Thus, the effective thermal conductivity
of the fluid medium was greater them the molecular thermal conductivity
of the fluid medium.

(b) The form of the convective flow was greatly subject to extraneous
temperature effects, which must very carefully be eliminated in adjusting
the more accurate measurements.

A noted exsmple of thermal convection in a spherical.cavity of large
dimensions (aerostat heated by the sun) was investigatedby E. V.
Kudryatisev (ref. 1).

3. Convection b Cylindrical Cavity with Horizmtal Axis

Figures 44 and 45 show photographs of certain cases obtained on a
model similar to that of figure 47. A sketch of the mo&l is shown in
figure 54. A rectangular block of a lead alloy of small heat conductiv-
ity (babbitt) was clamped through asbestos strips, between two Textolite
disks. A cylindrical opening, stopped by two positive optical lenses,
was drilled in the block. The obtained cavity made contact with the
outer space by a through channel, by which the cavity was filled with
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glycerine. The channel was then covered with stoppers on both sides.
Tubular channels were drilled alo?igthe opposite sides of the block. The
porcelain tubes of an electric heater coil and the connecting piece of
the water cooling pipes, respectively,were inserted into the channels.
The Nichrome spiral of the heater was inserted inside the opening of the
porcelain tube. With the aid of the combination of the electricheater
and the water cooler it was possible to prrxiucethe conditions of an
approximately homogeneous thermal field perpendicular to the horizontal
axis of the model in the block.

By mounting the model on the two horizontal bars of an “@tical bench
it was possible to assign the temperature gradient h the block anY ori-
entation relative to the vertical ‘(theheater was placed below, on the
side, or above, at any angle). The sngles were read ‘bymeans of a small.
pluuibline, slidtig in front of the graduated circle attached to the
Textolite disk.

The obse?mations of the convective phenomena in this model both by
means of suspended light-scatter= particles, and by means of the opti-
cal lattice method, showed that two types of motion are twicsl; namely,
circular and vertical-diametral.

The circular motion is obtatied with the heater and cooler placed at
the two sides of the model cavity. h this motion the fluid rises along
the warm wall and descends along the cool wall. b this w~.the stream-
lines resemble almost true circles.

The vertical-dismetralmotion is obtatied with the heater coil
placed below snd the cooler above. In this motion the fluid yises ti
the vertical-dismetralplane and descends at the sides along the cylin-
drical walls. However, the reverse phenmenon is also possible. (See
discussion of results in the preceding section.)

Both these types of motion are sufficiently stable and for the in-
cltied positions of the model may evidently exist together. With allyof
these motions the presence of considerablevertical temperate gradients
is clearly noted. It is thus clearly seen that the part played by the
fluid in the cavity of the model is equivalent to the part plsyed by a
vertical thermal dipole, or more accurately, by a continuous chain of
such dipoles placed along the horizontal axis of the model.

4. Concluding Remarks

The previously described prelhninary experiments and their results
do not as yet give a complete answer to the question discussed at the
beginning of the chapter. Their main significance lies in the fact that
they outline the whole experimental difficulty of the problems. In

.
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particular, ccsibinedmethdds must be employed.
method of observation must be combined with the

For exsmple, the optical
method of temperature

recording, and so forth. It is ltiewise necess~ to very carefully ‘ex-
clude external influences that are unaccounted for, to take noneltiinable
effects into account, snd so forth. A develop?mnt of suitable appliances
and equipment for the tests is thus required.

.-

.

.

.

.
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CHAPTER

THERMAL CONVECTION IN

CIRCULAR CROSS

17

INCLINED MODEL OF

SECTIC#6

1. Description of l&perimental.Setup

For the experimental investigation of thermal convection in a closed
circular mcdel heated at one end and inclined at various angles to the
vertical, models of the same type as those described in chapter 9 (sec.
1) were used.

—
At its center the model was attached to the horizontal axis of a

spcial stand; and, with the aid of a clock Uchanism, it rotated a~rox-
imatel.yonce each day. In this mamner the axis of the ch&nel very
smoothly assumed various angles with the vertical, starttig from zero
(heater on bottom) through x (heater on top) up to 2fi(heater again on
bottom). The temperatures were read hymeans of automatic-devices as
described h chapter 9, section 3. The usual apparatus was used as a
photographic recording device, the recordings of which have been pre-
sented previously in various &ecti.ons

2. Lsa15nar

An extract from the photographic
example. The recording was conducted
differences observed in the recording

(Cartesian recording). -

Regime

record (fig. XXI) may serve as sn
for five days, with no essential
of some days from that of others.

The temperature of the ahuninum jacket of the m&el was taken as the zero
temperature. The five averaging thermocouples nearest to the heater coil
were arranged 1 centimeter frcm each other, and the remaintig ones 3 cen-
timeters from each other.

When the heater was located at the top, the temperature along the
model varied according to the exponential.law, the texqperaturesof the
parts nearer the heater (upper curves) being considerably higher than the
others. The temperatures of the parts some distance frmu the heater
were almost equl to the temperature of.the jacket. The instant when
the model occupied a strictly vertical positim with the heater on top

.

.
%l%is chapter was compiled from data obtatied by V. A. Tetuyev.
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was distinguished by a natural siga; the air enclosed in the part of the
cold reservoir at the end of the model opposite to the heater entered

. the channel of the model h a flostfig bubble and partially displaced
the water there. When this occurred the temperature of all the thermo-
couples rose with a sharp jump. The greater the temperature gradient at
the location of the given thermocouple, the greater was the magnitude of
the jump. The reverse flosting of the air bubble from the interior of
the model occurred at the tistant when the chaunel of the model occupied
a horizontal position. The corresponding tistant was._msrkedon the
photo record by a small reverse jump, the cooler fluid moving toward the
heater.

When the heater is placed below, ~ convecticm takes place in
the model. The column of fluid has a greater effactive thermal conduc-
tivity; the curves are situated at almost equal distances frcm each other,
the temperature gxadient along the column be- the ssm.e. This gradient
depends on the angle between the axis of the channel and the vertical;
b general, the smaller this singlethe smaller the gradient. However,
at the instant of strictly vertical position of the tube the temperature
gradient in the region near the heater possesses a singular, sharp max-
hum. This maximum beccmes inappreciable only at a distance frcm the
heater approximately equal to 17 channel diameters. ——

The photo recording apparatus was later perfected. An alumtiw disk
was attached on the same horizontal axis about which the model rotated.
Pieces of two-sided (nonwarptig)photo films were attached to this disk
by simple clips. The galvanmeter was srranged in such msaner that its
point moved along the horizontal radius of the disk. lh this manner the
photo records were obtained in the form of polar diagrsms on which the
singleswere equal to the angles between the sxis of the charnel and the
vertical.

.-

The following figures show examples of the photo records obtatied
with this apparatus. Figure XXII corresponds to a somewhat larger heat-
@ Power than figure XXIII. These polar records permit the same 3nter-
pretation as the Cartesian records of figure XXI.

The small air bubble of these records was caref~ removed and the
heat expansion of the water was absorbed by an elastic compensator (a
piece of rubber tube with a Mohr pinch cock). The zero potat on the
photo records was taken as the temperature of the hottest thermocouple.
The peripheral curve refers to the temperature of the aluminum jacket of
the model. Figure XXIII notes the end of the nonstationaKY proces-s
marked by the starting of the model in motion from the position of “heater
above.” Figure XXIV shows a double print of the two last photographs.
Both photographs coincide Wth each other h the convective part.

.
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3. Generalizati”m of lkperimental Results–
.

The attempts to evaluate the obtained curves led to the following
conclusion. In general, in each position of-the model the temperature

.

distribution along the model corresponds to figure 28; the linear law of
temperature distribution coincides (without jump or break) with the ex-
ponential law. The first is characteristic for convective regimes and
for the parts of the model nearest to the heater. The second is charac-
teristic for the molecular heat conduction end is observed in the verti-
cal model far from the heater. The observed small deviatims of the
records frcm symmetry and fram the coincidence mentioned are readily ex-
plained by the unsteady regimes. I& velocity_of rotaticm maY be reduced)
smd the records will then be more symmetrical and the coincidence with
the previously mentioned schematic figures wilLincrease.

However, in this general coincidence there are also essential devi-
ations. In the first place, the characteristic convective gradient de-
pends on the angle as an even function (increaseswith increasing angle).
Secondly, the exponent likewise depends on the angle as though the thermal
conductivity of the fluid chemged with increase of the angle and assumed
an extreme (molecular)value for an eagle equal to m (heater on top).

The preliminary interpretationof the first of these facts leads to
the followtig considerations. If in the “fundamental”equations of
chapter 3 it is assumed that the force of gravity acts along the vertical
of the model, then it is natural to assume that for the inclined model
only the axi& ccmponent of the”gravitationalforce will act-upcm the
model. Hence in formula (3.7) it is necessary only to replace the mag-
nitude g by g cos a; that is, to retain cos a in formula (3.1). The
comparison of this hypothesis with the results of the measurements on the
photographs showed that this hypothesis is satisfactorily justified with-
in the interval of almost from zero to angle of 45° with the vertical.
Near zero the agreement is disturbed by the previously mentioned small
sharp maxlbnum. For angles greater than 45° it appears that the gravita-
tional.acceleration is to be multiplied not by cos a but by a larger
magnitude that is nearer unity than cos a. The comparison of this fact
with the mterial presented in chapter 11 leads-to the preliminary con-
clusion that the higher the heat insulation of the model the wider the
applicability of the “costie law.’!

In fact, the heat losses of the convective flow in the thermal con-
ductivity of the walls require the disruption of the antisymmetry of the
flow and in the formr plane of antisymetry also require the origination
of an additional ascending flow along the axis, and of a descending flow
at the wall (see ch. 16, sec. 2). It must be assumed that in en inclined
model the projections of the streamlines and the provisional “surface of
antisymmetry” take the form represented in figure 55. b this wsy the
velocity component normal to the axis of the model gives so considerable

.
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a value that the linear treatment does not lead to a satisfactory des-
cription of the actual state of affairs.

.
A prelimfisry interpretation of the second of the ~ovement ioned

facts (i.e., the change of the apparent molecular thermal conductivity
in an inclined model) is as yet clifficult to give. Particularly strange
is the fact that the ap~ent conductivity of the almost horizontal mdel,
when it must be assumed that there is convection in it, is less than in
the vertical model with “heater above,” when convection can hardly occur

dco in it. This fact is reflected in the last figures, in that they have a
N
+ greater extension in width than in height, the temperature of the hotbst

the~ocouple relative to the jacket being higher for the almost horizon-
tal than for the vertical mcdel for the s= heating power input. ...

4. Above-Crttical Regtie

.

.

At an increased heating power for the ahost vertical model (nesr
zero angle of incltition, heater below) the above-critical regime of the
heat convection occurs. in figure XfVA and B are shown the polar photo-
graphs corresponding to a cmsiderable heating power of =0.60 calorie per
second and to a lexge sensitivity of the galvamnet er (1° C corresponding
to 6.25 m). The zero point is taken as the temperature of the upper
averaging thermocouple, the farthest removed fran the heater, represented
on the photographs by a true uc of a circle. The relative temperature
of the jacket is recorded below this arc. The photo~aphs show how the
regime of the convection, maintained lsminar by the incltiation of the
maiel at large angles of inclination, is sharply changed into the above-
critical regime for small sagles. The smooth equidistant curves S&
sharply replaced by diffuse bands that reflect both the lowering of the
effective thermal conductivity of the fluid and the tistability of the
process.

On figure XXVIA and B are shown the polar photo records correspond-
ing to a lsrge heating power smd to so small a galvanometerssensitivity
(1° C corresponding to 0.66 mu) that the four curves of the preceding
record in the lsminar regime almost indistinguishably coalesce into one.
This coalescence is aided by the increase in the convection parmneter of
water @/vx due to the increased mean temperature of the fluid in the
mcdel for this raised power (see ch. 8). On the last photograph be@w
the zero line (the arc of the circle) the temperature of the alumtium
jacket of the model is again recorded; and still further below, the tem-
perature of the Dewar flask, the datum mark of the temperature. The ti-
creased heat= power led to increased clifficulty of lamlnarization in a
wider singlethan before (34° to 35° of arc on fig. XWIA and B as ccxu-
pared with 13° to 14° on fig. XXVA and E) . @ figure XXVII, because of
the ticreased sensitivity, it is possible to dist~ish the detailed
character of the tistability at the above-critical regime.
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From a comparison of the last photographs the following questicm
.

may ‘beasked: Is not the small sharp maximum near the zero angle on fig-
ure XXI m indication of the incipient above-criticalregime that clearly
develops at krge powers; is a lsminar regime in general possible with a

.

strictly vertical model and cmplete absence of external cross tempera-
ture gradients? b this conuecticm it is useful to emphasize that the
tests described in this chapter were conducted ti a rocunwith tempera-
ture uuder good themnostatic control.

.
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CHAPTER 18

CONCLUSION

The material presented b this report must in no sense be considered
as exhausting the probkn of gravitational ccmvection tier the ccmditions
of the titernal problem. On the contrary, the inexhaustibility of any
branch of science is again eruphasized. However, this material may serve
as a guide for further research in the fiel.dswhich -diately relate to
industrialproblems as well as to problems of physico-mathematical
investigation.

+j An orientating list of those preliminary questions which are directly
s suggested by the material.presented in this report and the further study
N of which should develop into well-founded technico-scientific investiga-
N tions is as follows:
&

1. Investigate frcm the material in the literature how the ideas of
Lcxnonosovon convection have been worked out by Russian and Soviet

. scientists.

2. Consider md theoretically rework the foundations for the setttig
up of the eq-t ions of gravikations.1convection with a view toward”&nder-
ing them more accurate and extending the range of their applicability.

3. Extend the results of this work to convection of a nongravita-
tional (electrostatic,magnetic, or other) nature.

4. Tnvestigate the “external problem” of gravitational cmvect ion
as a particular-case of the “int&al problem.fi

5. Extend the investigation to different fluids and
ur5ng procedure of the cczmrectionparsmeter gj3/vx as a
index for fluids.

work out a mess-
chemico-analytic

..

6. Uvestigate convection in gases for the same snal.yticalpurposes.

7. ~vest igate the convective phenomena of the preceding type in
tit iple phase systems with stratification near the temperature of mutual

+ solution, and make use of the turbidity of the fluid connected with the
formation of an autoncmmus phase as a “thermoscopic”factor.



172

8. Clarify the
of gases as sharply
properties.

9. Ii_mestigate

NACA TM 1407

question as to the setting in of the critical regime
as of liquids, and investigate its characteristic

—.
the phenomena in mcdels of noncircular section.

10. tivestigate the phencxnenain models of variable s&tion.

11. Carefully investigatewater and other i&ortant ti-dustrial
fluids, considering the values of the convection parameter, and issue
tabulated results.

~.
12. Compile and publish tables of various cylindrical functions of

the argument (-@) far use in er@.neering computations of those cases
of convection where the temperature above is higher thsa the-temperature
below (ch. 5, sec. 5).

13. Investigate the work of &haust afiarat~ and flues with natural
and forced circulation, considering the super-position of free and forced
convection (ch. 5, sec. 4).

14. Extend table 1 to the case where the temperature above is higher.
--

15. Clarify the question of the heat cond~tivity of a fluid in end
phencxnena.

16. Give a greater quantitative clarification of the se&empirical
relation (ch. 11) regarding the velocity of approalh flow. —

17. Investigate the “natural” thermal fluctuations in ~teady re-
g~s applying to industrial needs.

18. Investigate the diffusicm (concentration)and thermodiffusive
convection analogous to the thermal convection investigated in this
report.

19. Investigate an models the convection prcc&s in the~cooling of
castings (both its hydrodynamic and thermal aspects).

.

20. Experimentally render more accurate the value of the Nusselt
nun.iberand explain how, and on what parameters, it depends. –

21. Analytically investigate the nonlinear above-critical case..

.- .G—

.

—

-—

—.

22. Experimentally investigate convection in a spherical cavity
for a horizontal temperature gradient.

.

.
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.
23. Supplement the theo~ of convection in a horizontal tube with

the case of heating from below.

.
24. Experimentally investigate, in an exhaustive manner, the problem

of convecticm h a circular horizontal channel (from the theory of ch.
15, sec. 6).

25. Investigate the problem of convection in an inclined channel for
my orientation of the temperature gradient.

26. Investigate the process of the transition or the coexistence of
convection with axial.symmetry and dismetral antisymmetry, for heat losses
at the wall.

27. Investigate convecticm in a cylindrical cavity in regard to the
parametrical nonltiearity (for narrow capillaries, as, e.g., the pores
of boiler scale).

28. Investigate the effect of the fluid-colunm length on the degree
of stability of the convective moticm in the colmm (figs. XVII and.
XVIII).

.
29. Ihvestigate the problem of the gravitational-themnsl effect, and

crestruct the tensor of the effeetive the= conductivi.ty of porous ma-
terials on the basis of the considers.ticm of chapters 5 (table 1), 15,
ad 16.

30. Investigate the gravitations.1-thermaland gravitational-
concentration detector effect; that Is, the occurrence of vertital.
clientsof temperature or cmcentrat ion in zcmes containing liquids
gases for pericdic chsnges of temperature or concentration.

gra-
or
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CHAPTER 19

SUPPIEMEN’TARYTOPICS

1. Electrolyteical Method of Measurfig %m.peratur=es17

Reference 1 shows that the difference of potentials E, observed be-
tween two like metallic electrodes hmersed in a solution of a salt of
the ssme metal, is expressed by the formula –

(19.1)

where %1, ~d %2 denote, respectively, the.constant of equilibrium

at the absolute temperatures Tl and T2, Z the valence @? the metal

ions, and R the gas constant. The expression R/F constitutes 198.4 .

microvolt per 1° C.

It may be expected that the expression in parentheses will, in a .

small temperature interval T1 to T2, be proportional to–this interval

(19.2)E=A(Tl - T2)

The value of the factor A was determined experimentally for copper
electrodes and for soluticms of copper sulphate in water. z

The electromotive force was measured between two pieces of enameled
electrotechnical copper wire of 0.41-millimeterdismeter by mesms of a
Raps compensator. The bared ends of the wire were wound on the bulbs of
two thermometers whtch were placed in the COPP= sulphate solution.

A saturated solution was used for the first test. The chemically
pure solution of c~er sulphate ti distilled water was placed in two
small beskers which were connected by a siphon capillary. The copper
sulphate crystals were in small excess in both b&kers. tie of the
beakers was heated by a heater coil of high-resistance enauel wire that
was wound on the glass of the lower part of the b-eaker. The other beaker

17This section was compiled from data obtained by N. A. Ple&dcov.
“

.
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was at room temperature. The bulbs of the thermometers were immersed in
the beakers, and served simultaneously as agitators. The electrodes were

. held short-circuited throughout and were connected in the compensator only
for the short intervals of measurement. h the t~erature interval of
10° C (eight readings), the coefficient A in equation (19.2) was constaxit
and was eqgal to 100 microvolt per degree.

ti the other test, which included 34 read-s h the interval of
30° C, the electrodes were either short-circuited or were disconnected
for considerable intervals. With open electrodes the coefficient A was
obtained eqy.alto 62 microvolt per degree; far closed electrodes the
coefficient maintained its previous value of 100 microvolt per degree.
Stice the closing and opening of the electrodes was effected in the course
of the measur~nt process, the coefficient A was now defined as

Al +;
1

T2 = constant (19.3)

The ssme experiment for open electrodes, repeated for a 20-percent
solution of chemically pure copper sulphate gave the value Al= 65.7

microvolt per degree in the interval of 21.5° C for 25 readtigs. The
test, which was conducted very slowly, showed that the figures obtained
on raising the temperature agreed we~ with the figures obtatied on low-
ering the temperature. At the ssm.etime it was revealed that an appre-
ciable electromotive forces (110 microvolts), arising from the nonfden-
tical chemical composition of the electrodes, also existed for Tl = T2.

In a 15-percent solutim of Wustrial cower sulphate in distilled
water, with open electrodes in en titerval of 45° C with 13 readings up-
ward ad 6 reading downward and with ~osure at a higher temperature,
it was found that Al = 61 microvolt per degree. This test also showed
that the values of Al a~eed well with each other h the upward snd

downward reading. However, while the temperature was held at the higher
value a change of the initial electrcmotive force occurred, frcxu120 to
240 microvolts.

The tests conducted with the saturated soluticm of the industrial
strongly contaminated copper sulphate, dissolved in piped water b“ the
interval of 26° C (16 points upward smd 18 downward), gave the value
Al = 74 micro-voltsper degree and also revealed a displacement of the
hit ial electrmot ive force when held at the maximmn temperature.

The internal resistance of the tivestigated compounds was rather
large (of the order d 30,000 ohms). Hence, to replace the cmnpensated
measurements of the electrcxnotiveforce of such a “thermtiectrolytic
element” by measurements of the current was not advisable. In fact, for.
the usual (small resistance) galvmometers, these will be measurements
of the “short-circuit current.” The strength of the current is determtied
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not only by the electromotive force of the element but also by its in-
ternal resistance (includtig here the polarization effects). The test
confirmed that the dependence of the galvanometersreadin@s connected
directly to the element on the ”temperaturedifference ismonlinear: On

.

increasing the temperature of one of the electrodes the resistance of
the cmnpound decreases, and the galvanometers readings increase
nonproportionally.

To verify the suitability of this device for measur~nts under con-
ditions of industrial practice,:the fol.lowkg test was conducted. A
glass tube of 2.5-centimeter di.&eter end of 45-centhneter len@hwas
filled with sad contaminated with earth dust and was tr~ted at room
temperature with a saturated so~utia of industrial coppe$ sulphate in
piped water. At both ends the tube was stopped-with corks, in which
thermometers were inserted. The thermometer bulbs were wuund with the
bared ends of enameled electrotechnicalwire of 0.41-mill@eter dismeter,
forming the electrodes. At one;end the tube was wound with the high-
resistance ensmeled wire of an electricd”heater. Ih the3ntezwal of
the temperature differences up to 18° C (nine readings) the measurements
with the open circuit electrodes gave the value Al = 62 ~crovolts per

degree, and in the interval 22°.to 40° (six readings) the measurements
with the closed circuit electrodes gave the value Al = 8~ microvolt per
degree. ‘Aconsiderable change @ the initial electrmnotitieforce was
noted during the assemblage and while the apparbtus was held at high

.

temperatures.

These data show that, by taking a number of precautions, the elec- .

trolytic method @be suitable for technical @.asurements of temper-
ature difference. The main defect of this method is the chsnge in the
initial electrcxnotiveforce h Qrolonged tests.71This cha@@ is connected
with diffusion processes. For @ter solutions, the diffusion coefficient
is 100 times less than-the temperature-conductivitycoefficient. Hence,
the balancing of the concentrations at the electrodes will proceed 100
times more slowly thsn the bakmicing of the temperatures, because the
diffusion can only pass through the fluid while the heat c&n also pass
through the wall. The consideration of this fact aids in ~erfecting
the measurement procedure.

2. Problem of Geothermal Gradient

Geologists frequently insert thermometers in drilled wells in order
to measure the temperature of the layers of the earth’s core. In doing
so they assume that, h the absence of liquids that enter from without,
the liquid in the well is at rest and at each de~th has the temperature
of the surrounding stratigraphical layers. However, the temperature is
higher in the depth of the well than at the ground surface; and condi-

.

tions for convective heat transfer may arise.

.
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Most geologists are sceptical as to the
vection in drilled wells (ref. 2). However,

-possibilityof thermal
the liquid in the-well

177

c!oi2-
Can

. be at rest only at small temperature gradients. On attaining a chsrac-

t-1
ccl
N
d+

teristic gradient, the liquid is set in motion and will transfer a very
large quantity of heat upward. For a well of 12-inch dismeter (30 cm)
filled with fresh water, the characteristic gradient will be 3&=l&
less than in our first model (of about l-cm diem.). It is “a~roxhately -
A = 10-7 degree per cegtimet~, which corresponds to a geothermal grsdient
of the order of 107 centimeters per degree = 105 meters per degree = 100
kilometers perdegree.

In order to obtain the mean world geothermal gradient of 30 metffs
per degree {i.e., the characteristic gradient A = 3.3XL0-4 deg/cm), it
is necessary to examtie a well of about 4.2-centtieter dismeter, filled
with fresh water.

The geothermal gradient for the characteristic gradient must be
determined by the formula

+=gxx ~4
(KR)4

(19.4)

Chapter 8 gives the parsmeter g$/vx for fresh water and certain other
liquids (eq. (19.4)). The tube radius R must be expressed in centi-
meters; the characteristic number (~)4 has a value of about 100 (for
a more accurate value see fig. 4)..

If the heat source below is of sufficient power (i.e., if the thermal
conductivity of the hot layers at the bottom of the cavity is sufficiently
lage), an above-critical regime of heat transfer sxises. b this reghue
the effective thermal fluid conductivity is much higher than the molecular
(tabulated) fluid conductivity and may be evaluated approximatelyby the
formula (see ch. 10, sees. 3 and 4)

(19.5)

The value of A that enters here for the tabulated thermal conductivity
of fresh water is, in technical.dimensions, appraxhnately equal to 0.5
kilocalorie/(deg)(m)(br).

Geologists are familiar (ref. 3) with the disturbances of the-field
of the earth’s core that are connected with the dissemination within the
true stratification of rocks of bodies of some other (mining) varieties
of dfiferent form and composition. A drilled well is a body of this kind.
The effective thermal conductivity of this bcdy BY be determinedly the
preceding formulas. It is then possible to consider the distortion that
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it introduces in the temperature”of the surrounding layersl,and the .
errors that these measurements give.

.

3. Problems of Natural Ventilation “-

Suppose we have a chamber, separated frcxnthe surround@g atiby a
thick horizontal wall, containing a cylindrical chszmel. ‘l& chanuel
length is large compared with t% di~eter; the edges are r@nded. If
the temperature below the chsmnel is higher thsn above, the arrangement
will be favorable for convection: We restrict ourselves for the present
to a single opening so that the quantity of outside air that enters the
chamber is equal to the quantity of air flowing out from the ssme channel
(conditionsof dlsmetral antisynmetry).

Favorable conditions of ventilation obtain only for the laminar re-
ghne, when the horizontal compcmehts of the velocity of the air in the
channel are not large. At the above-critical regbe the mdxingof the
air in the channel sharply impairs the conditions for vent~tlon. The
lsminar regime arises only for a characteristic gradient an~ is observed
when the channel length 2, the channel radius R, and the difference in
temperature between the external air ad that in the chamber._ el-~”

satisfy the condition
—.

(19.6)

.

which follows from formula (5.15). This value of 200 corresponds to the
=

small thermal conductivity of the air as compared with that of solid
bodies (fig. 4). For example, brick masonry kas a conductivity 40 times
as large as air. Substituting the parameters of air for a temperature
of 20° C: we

For example,

obtain approximately

e’ - e“
-L

~R4.2 (19.7)

for a wall thichess of 1/2 meter end an openin~ of 2R =
10-cent~eter diameter, the conditions-of
temperature difference

e’ - e“” =0=54

lsminar convection~arisefor a

0°, 16 C“ (19.8)

The maximum possible quantity of heat transferred by th&laminar
reghe corresponds to the critical point, where it is equal to the above-
critical quantity. For the critical point, we thus obtain approximately

.

(19.9)

.
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For exsmple, for air

% ‘“= 6XL0

Setting NUH = 103, we obtain

; Nu= “
4H0-4 Nu**

R (19.10)

Q.~
-F-

cal/sec (19.11)

The narrower the channel, the larger the critical quantity of heat trans-
ferred. For example, for a channel opening of 2R = 10-centimeter dism-
eter, the qusmtity of heat transferred is negligible (about 0.02 cal/see).

For shorter channels, most of this qusntity of heat passes directly
with the air. The air passing upward does not have sufficient time to
lose much heat in the downward counterflow of air through the secondary
molec~ thermal conductivity. Therefore, we cau approximately set

Q@=pc(e’ -e”)v (19.12)
.-

whence the volume velocity is determined as

For example, for air

v=

%7z+%

0.4 2X3-03s
3xLo-%2(e’ - e“) R2(ef - e“)

(19.13)

(19.14)

If we replace the temperature difference by the characteristic gradient,
we have

v . 2XL03— R2 = 3=02 ; cm3/sec
2-L

(i9.15)

Thus, for the conditions of the existence of the characteristic
gradient, the volume of ah exchanged is proportional to the area of the
chsanel cross section S, and is tiversely proporticmai to the ch&nnel
length 2 (“Ohm’s law”).

For the preceding example this giyes - ~ --

v.

If the channel is short of
the end effects may disturb the
conditions of ventilation.

300 cm3/sec’ ‘--(19.16)

if its edges are shsrp, the action of ‘“
assumed latisr regime and impair the
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ventilation
the channel
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.
critical gradient is eqcceeded,the conditions favorable for
are so sharply impaired that it is more convenient to divide
into a number of channels by constructing longitudinal ver- .

tical partiticms. In this way it Is possible to ad&t tie c@ening of
the channel to the characteristic dimensions for each gradient. At the
same the the conditions of ventilation may become-more favo~able because
an independent flow of air is established in each small channel lobe.
Ventilation may then be realized without counterf16w in a siriglecknnel.

g.
4. Problem of Velocity of Evaporation18 -

E

Assume that in a dense hcmogefieousmass, filling the l&er ha~-
space, a vertical cylindrical we~”filled with water is drilled (fig. 56).
The weak turbulence of the air over this channel maintains a constant
absolute hwidity of Cl grams per cubic centtieter at the @annel

mouth. Strictly isothermal conditions are assured in the enttie setup.

Since water vapor and air have moleculsr weights of 18 ad 29,
respectively, the drier the air abdve the well, the lighter the more
humid air inside the upper part of the weu. For defitite cations in
the upper part of the well, the f@lowing gravitational diffusion convec- _
tion may arise: The ligher vapors entering the well from abo~e may rise
in the drier air. We shall clarify these conditions and establish the ve-

.

locity of the process of the drying out of the ch&.nel water.:

The diagrsm in figure 56 shows the dependence of the mean humidity “
over a cross section in the well, on the level of the section:

c = c(z) (19.17)

Directly above the water level h the well the constant (“100 percent”)
hwnidity Co(f3)prevails, determined by the temperature of the experi-
ment. For example, for the temperature 20° C, C!.= 1.73x10-5 grsms per

cubic centimeter. If the relative humidity above the mouth o? the well

is 60 percent at 20° C, then Cl = ‘1.04X10-5gram per cubic c&ntheter.

For a barcm.etricpressure of 760 millimeters of mercury and some
humidity C, the partial pressures .ofthe vapor p_and of the air ~
are equal, respectively,by Clapeyrgn’s equation

ROT
P=yc; (19.18)

18This section was compiled frcxndata obtained by V. B. Shein.

.
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.
(19.19]

whence

(19.20)

where ~ is the gas ccastant, T the absolute temperature, and w and

Wb the molecular weight of water s.ndair, respectively.
the n&dmre of air smd vapor is equal to

P =C+Cb

Therefore, the concentrateion density coefficient (fomnula

- 0.61
P

Cm=/g

.
By analogy with equation (5.15) and from figure 4

dense walls of the weU, impenetrableboth for air and
of the convection parameter (Z-axis directed downward)

64=

Therefore, the critical value
concentraticm gradient is

dc =674x VD
dz”

= 67.4 X
&@R4

@lR4 ~dC

XD —= 67.4
dz

we

The density of

(19.21)

(2.7)) iS

(19.22)

find for the
water, the value

(19.23)

of the cross-sectional mean of the vertical

18X10-5X0.25X1.3X10-3 = 5.07xlo-6

1.3m0-3X981X0 .61XR4
(19.24)~4

where there has been set for air: D = 0.25-square centimeter per second,

~ = 0.0013 grsm per cubic centimeter, and q = 18x10-5 grsm per centi-
meter per second.

The critical depth Zo, fran the mouth to the water surface in the
well at which the critical gradient of the concentration is just barely
attained, will therefore be

.

.
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R* = CO “ c1 = ~ 07=0.6
.

Z()

.Cfi -c..

For our assumptim we obtati

ZO=R% ‘=mT&XIOO -.

= R4 (1.73 - 1.04)xlo
-5

Zo
5.07mo-6

O.ul

—

.

(19.25)

= ~4 0.69
,+,

~ X 10 = 1.36xR4 cm (19.26).

—.
The considerations that were adduced here by analogy tith thermal

convection are suitable for those vertical distances that &.xceedthe
well diameter:

2Rg 1.36 R4 (19.27)

Hence, for the well radius

R3 2
%m = 1.47 cln3

R“>l.14 cm

—

—
(19.28)

.

the concentrating isrepresented in figure
If in the process of drying only the level

The critical distribution of
56 by the straight line AB.
Zl, but not the level Zo, is attained,-thenby aualogy wit-hfigure 35,

we are justified.ti expecting the mean cross-sectionalconcatraticm dis-
tribution, shown by the curved ltie AEF. The curved line represents, on
the average, the critical gradient joining at the edges with the concen-
trations Cl and CO by the exponential transitions.

Both transitions are the ssme because there are no losses of sub-
stance through the well walls, in contrast to the heat losses shown in
figure 35. Mentally replacing these two-transiticmsby the double trans-
ition, we obtain the curve AGF.

The velocity of transfer of the vaporized fluid is praE_@cally de-
termined in its convective part by the diffusion resistance of the ex-
ponential transitions. This resistance may be evaluated by cansldering
the formula of the end phenomena (12.1) as the resistance of a part of
the well of length 2R. The effect of convection on the pr~cess of evap- .
oration is restricted only by a certain lowering of the fluid of the
active moisture deficit on the surface. This deficit assumes the value
represented by the segment .
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.
co - c1

HF= (Zo - z)Zo (19.29)

.
Hence, the velocity of evaporation is equal to

f12podz

(

Zo-z

dt
. ~2D(Co - Cl) ~

)
+~

o Zo
(19.30)

On the left of this expression the total flow of the vapor mass of the
vaporizing water appears, having the constant fluid density PO. ._&the-
right the same flow is divided into two diffusion component-s.”The first
of these components represents the “overcoming of the diffusive resis-
tance” of the exponential transition (with further transfer of this flow
by convection); the second component represents the molec~r diffusion
flow acccmrpanyingthe convection and corresponds to the critical concen-
tration grsdient

co - cl
Zo

(19.31)

Dividing the equation (19.31) by the area of cross section of the
. well *2 and separating the variables, we obtain, after integration,

dz D(CO - Cl)
= dt

Zo+ 2R - z P#zo 1

‘o+=-z D(CO - Cl)
In =-

Z. =ZOPO
t

}

D(CO-C1) ~
zo+m-z- 2Rz@o

= e J
‘o

(- )D(CO-C1) ~
=ZOPO

z =2R+zOl=e

where as initial conditions there was set

Z = 2R when t . 0

(19.32)

(19.33)

(19.34)
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The initial velocity of drying (for t = O)

()dz
D(CO - Cl)

~o=
~P~

.- (19.35)

is found to be inversely proport~onal to the well radius.

The exponential dependence-of “z on t is”appr6xima~ei.yshown in
figure 57. At the instsmt t = t~, when z rea-tiesthe value Zo> the #
convection ceases and there remains only molecular diffusicm described .~
by the simplified equation —.

ti2podz co - cl
dt ‘

fi2D z

—

.— (19.36)

Dividing by the area ~2, separating the variab~s, and integrating give _ __
successively

D(CO - Cl)
zdz= dt

Po

)

(19.37)
2D(C0 - Cl)

.2= PO (t + tz)

The constant of integration t~ is chosen so that z is e@.lalto 20

for that value tl which corresponds to this instant, accofiing to the
equations

~~= D(CO - Cl)
.

Z(-J 2Rz@30 ‘1

(19.38)
2D(C0 - Cl)

%=- (t~+tz)
PO

Elim.inatfig tl) we obtain

P&; 2RzOR0 Zo
‘t2”=tl=D(Co-C1~h~2D(C0 - C1~

(19.39)

Thus -.

2Rz&o

)[

Zo

1

20

‘2 = D(CO - Cl
;Xz-ln= (19.40)
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where the expression in brackets is positive under the assumed conditions.

. The transition of the exp~ential law of drying to the parabolical
law proceeds at that level of water in the well which is determined by
the coordinate z = Z.. Substitution shows that the drying curve ““‘“

z = z(t) does not suffer either a jump or a break here.

Thus the actual process of drying water out of wells represents two
interchangingprocesses (fig. 57)j namely, an ~onent ial a+. and a

d parabolical bb. b the parabolical process the humidity distribution
~ (now cmstant h cross section) as a function of the depth of the water

level is expressed by the strai@t line AK (fig. 56). .-

It is possible that for the conditions

Z3<z<zo (19.41)

in reality, the regime of convection wiJJ_not be laminar but will be the
above-critical turbulent regime. This possibility is particularly lsrge
for small values of z that are very much less th~ Zo. Before ob-

~ taining experimental data on the above-critical phenomena in gases, it
~ is difficult to say anything positive on this regime. In these computa-

tions it is assumed that the maguitude s in formula (12.1) is equal
to 2.
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TABLE I

k *4 l(ig ) + Gf~) + H(g) + ~z(f)

?l=o ~ . ~.l ~=03 A%! k Ae %
b h b“ z=~”l T = 0“3 ~ = 0’1 T-”

o 0 6.9282 7.6210 9.0067 13.890 9.0067 7.6210 6.9282
2.0 16.0 6.56 7.10 8.17 1.1.94 7.35 6.04 5.38
2.2 23.43 6.28 6.74 7.65 10.86 6.47 5.21 4.58
2.4 33.48 5.94 6.30 7.03 9.50 5.34 4.15 3.56
2.6 45.70 5.67 5.90 6.37 7.99 4.02 2.89 2.32

2.8 61.47 5.16 5.23 5.38 5.83 2.22 1.19 .67
3.0 81.0 4.49 4.36 4.10 3.08 .04 -.86 -1.31
3.2 104.8 3.70 3.32 2.57 8 -.67
3.4 133.7

-3.41 -3.78
2.76 2.09 .76 -;:92 -5.85 -6.40 -6.68

3.6 167.9 1.62 .60 -1.42 -0.53 -9.66 -9.99 -10.E

3.8 208.6 .23 -1.17 -3.98 -13.80 -13.96 -14.01 -14.03
4.0 256.0 1.37 -3.20 -6.86 -19.66 -18.70 -la.43 -18.29
4.2 311.2 -3.22 -5.50 -10.07 -26.04 -23.79 -23.14 -22.82
4.4 347.8 -5.25 -8.01 -13.53 -32.85 -29.18 -28.32 -27.60
4.6 447.8 -7.23 -10.30 -16.45 -37.98 -32.92 -31.47 -30.75

4.8 530.9 -9.16 -IZ.48 -19.io -42.31 -35.90 -34.07 -33.15
5.0 625.0 -10.61 -13.97 -20.69 -ti.2 -36.8 -34.7 -33.6
5.2 731.2 -U.n -14.91 -21.3 -43.7 -35.5 -33.2 -32.0
5.4 850.3 -12.17 -14.99 -20.6 -40.4 -31.8 -29.4 -28.2
5.6 983.5 -M .10 -14.36 -18.9 -34.7 -26.2 -23.8 -22.6
5.8 1132.o -1.1.47 -13.oo -16.1 -26.8 -18.7 -16.4 4.5.3
6.0 1296.0 -10.46 -11.15 -12.5 -17.4 -10.0 -7.96 -6.91
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TABLE II

I

2.865 0 67.4
2.9 .07 70.7
3.0 .31 81.0
3.1 .62 92.4
3.2 1.02 104.9
3.3 1.59 118.6
3.4 2.43 133.6
3.5 3.78 lso.o
3.6 6.27 168.O
3.7 U.5 1.87.4
3.8 58.4 208.5
3.8317 = 215.8

TABLJZIII

Numberof ]W[ -(kR)4 v. Regimeof

~~s8)
Convection Temperatures

Wee Forced

1 4.611 452.1 0 None

}

1

None lkmmerupward
2 5.00 625.0 5
3 4.00 256.0 5 Present

1

Warmerupwardand

4 3.00 81.0 5 at walls

5 0 0 5 None Upward Constantalonglength
and overpipe cross
section

6 3.00 81.0. 5

}
1

Colderupwardand
7 4.00 -256.0 2 =esent None
8 4.61J_-452.1 0

at walls

9 5.00 -625.0 -1 Downward Colderupward
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TABLE Iv

[lkRl= 4.611;(l&)4= -452.1;a = 0.179;.Vo.
- Arbitr&ys&le.] -

@#E’

-18
-62

-103
-138
-169
-194

-212
-227
-236
-240
-242
-242
-242

&
Va

v
E

0.943
-.84

-2.38
-3.63
-4.56
-5.11-

-5.27
-5.05
-4.42
-3.40
-1.97
-1.17
0

0 19.79
.043 19.51
.087 18.98
.130 18.03
.173 16.82
.217 15.27

408
404
392
380
344
310

277
225
17a
129
78
29

0.520
.564
.607
.651
.694
.737

.781

.824

.867

.910

.954

.9976
1.00

.260 1.3.46

.304 U.48

.347 9.39

.384 7.70

.434 5.02

.477 2.92

.

TABLEv

w
(IR)4 = -625 (kR)4 = +625

o
.2
.4
.6
.8

1.0

0
.25
.50
.75
.95

1.00

-L
-14.8 -336
-11.4 -280
-3.52 -78
3.36 108
4.80 174
0 132

(IsR)4= -256

0.0124
.177
.66

1.28
1.48
0

-166
-162
-122

42
435

1040

(IR)4 = +256

1.12
84.0
21.8
-50.0
-85.0
-92.0

7.50
5.75
2.20
-.64
-.485
0

0.68
.86

1.25
1.32
------

0

-I-2.1
-9.1
14.2
23.7

-------
55.8

(k@4 = -81 (b%)4= +81

2.89

I
23.2

2.28 17.2
1.42
1.45
1.37

-1.45
-1.71
11.35

0
.33
.67
.933

1.00

.945

.100
0

2.5
-10.0
-12.8

------ I-------0 25.1
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TABLE VI

-$ ; v,
cm2/sec

Fr:=-

13.3
9.49
7.06
S.sl
4.37
3.59
3.00
2.54
2.20
1.92
1.72

Substance e,
O(-J

A,
cal

0 see/cm

0.001.32
.00136
.oa140
.00144
.00148
.00152
.00J56
.00160
.00164
.00M8
.CQ172

J@,

#&5

-2,050
3,600
12,5Ca
25,2CXJ
37,5Ca
51,100
65,803
82,3@3
100,033
121,0ccl
144,000

pc,

*

1.005
1.000
.997
.994
.980
.987
.982
.979
.974
.970
.965

-Sao-s
6.5

18
30
38
45
51
57
62
68
74

18XI-O-3
I-3
10
8.05
6.59
5.56
4.79
4.15
3.66
3.26
2.95

Water o
10
20
30
40
50
.60
70
80
90
.00

I
18M0-5 I 1.15xlo-320 0.020 0.026 >.45 3,400

UXLO-5 XX1O-J

8.5

0. 0CCM3

0.0007

0.0000603

16

8,900

0.722

).46

).73

770,000

60I Glycerin 5(X1 O-518

157xlo-320 1.0C0282 100

TABLE VII . - SmNnARD coNvmcTm

cuKvEmRwmER

Temperature, vertical
8, distance,
Oc”

1()
$4= =:3

0
4

10
20
30
40

0
-4,150
6,150

83,100
270, CQ0
591, OcO

.
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TABLE VIII

Part I

.

Temperature, Power, Gradient, (Ii& Nu* Remarks
Q, A,

% cal/sec &g/cm

i 21.9 0.012 0.103 80 1.I.6Model 1, prel~nary
diem., 0.98

2 28.6 .08 .97 108 260 Upper set
3 31.1 .08 .83 105 295 Center
4 33.5 .08 .77 107 333 Lower
5 27.5 .12 .95 99 432 upper

I-04

1

Model V,
6 30.5 .12 .85 455 Center 6fam., 0.526
7 32.5 .12 .82 llo 460 Lower
8 31.5 .27 .82 105 1030 upper
9 33.8 .27 .66” 94 X500 Center..

Mean 104&2

10 26.4 .061 .087 103 495 Model 1, ser. III
H 22.0 .122 .--.- --- 1420 Model IV, dlsm., 3.8

Part II —

Temperature, Power , Gradient, (H@ NU* RemarlG3
8> Q, A,
Oc cal/sec aeg/ail

12 36.0 0.27 0.80

1

1.21 KLoo Lower set
H 42.5 .49 1.1.1 214 1440 Upper
14 45.4 .49 1.02 217 1500 Center
15 49.1 .49 1.30 308 J220 Lower Model V,

16 48.1 .746 1.90 377 lwo Upper 61Euu.,0.526

17 48.7 .746 1.80 423 13CX) Center
18 54.8 .746 2.26 620 1040 kwer

19 21.1 0.38 0.15 181 2410
20 30.5 .65 .39 560 1.550
21 39.8 1.05 1.02 2170 930
22 34.5 3.80 1.31 2260 2660
23 42.9 1.73 1.19 2640 1.w3
24 37.7 3.8a ~.62

1

Mcdel I, mr. II,
3160 2130

25 47.0 1.53 1.21 32CX3 1120
diem., 0.98

26 56.5 2.07 1.58 5400 1130
27 50.1 2.50 1.83 5502 1203
28 47.5 3.80 2.32 6300 1450
29 64.4 2.70 1.74 8700 Mlo

30 29.8 0.170 0.097 133 1620
31 29.8 .245 .152 217 U90
32 29.9 .435 .2Z9 327 1760
33 29.7 .331 .231

1

Model 1, ser. III,
328 1.320

34 32.9 .550 .345 568 1470
tism.> 0.98

35 36.1 .6B0 .509 856 1220
36 96.3 ..4%24. 2.50 19,5ccl 1540

Mean NU*
1460&lo

.

.
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TABLE Ix

i Pi ~i ri ‘i

1 1,065 - ~7&5
1,103,985 -1 ~5

88 >

2
1 068,531

570 -988
1,412,039 -3 ~90

88 >

3
310 279

3,990 - 8;
517,651

88
-570

4
897 487

1,635 - &
1,384,776 -7 035

44 Y

5 7,035 - 162&731
5,727,136 -1 635

44 9

6
621 3374,560 – b~ 896,777 -4 ~60

44 )

7 -3,874 10,206,561 13,737,022
264 - 264

3,874

8 -3,379 15,592,945 - 18,260,720 15 755
264 264 Y

9 -15,755 5,382,745 - 7,642,112
264 264

3>379.

10 2,809 qo rlo -2,809

TPLE x. - IWATION OF THERMOCOUPLES

I Niuiberof thermocouples 1 2 3 4 5 6 7 8 9

45 45 45 45 0 0 0 0

0 90 180 270 0 45 90 1.35

IL M 13 14 X5 16 17 18

0 0 0 -45 -45 -45 -45 -90

225 270 315 0 90 180 270 ---
.
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TABr-zlXI. - INVEWIOATION OF CONWK!’TION IN SPIDIRICAL CAVITY

Number of
thermocoupleH

Latitude

cooler
+900

Power rates

0.196

9.5
15.75

0.37

3
14.25

0.595 \1.08 1.92

6.25
17.1

3.00 4.14_ 6.5 3.00
angtl

i--

3.5 3.5
14.25 14.75

A
1 a

8.25
25.75

—.

27
26.88
26.25
26

.—

30.5
31
30.75
29.1
29.75
29.75
29.25
29.5

34.75
35.6
36.26
36

44.25
E?4.75

6.65
18.35

2
3
4
5

17.5
17
17.25
17.75

16.5
15.75
16
16.63

16.5 17.5
15.75 16.88
16 17
16.6 17.5

19.5
19.25
19.38
19.6

23 20
22.5 19.5
23.05 20.5
22.65 20.75

25 22.75
25.45 23
24.5 21.73
24.25 21.6S
24.75 22.8a
25.1 23.5-
24.25 23.5
24.5 23.12

27.5 26.5
27.5 27
28 27.75
27.9 28

32 ;;.5 -
64.5

20.85
21.3
21.3
20.85

6
7
8
9

10

18.5
18
17.9
18
18.3
18.75
18.6S
18.75

17.5
17
16.9
16.83
17
17.38
17.5
17.6

17.5 18.75
17.17 18.38
16.87 18
~6.75 la
16.87 18.X5
17.25 18.7
17.75 18.9
17.75 18.9

18.25 19.75
la 19.62
18.25 19.75
18.5 19.9

19.25 21.0
27.75 34.75

21.37
21.5
20.5
20.5
a
21.25
21.25
21

22.35
23.8S
23.97
23.72
23.6
22.85
22.47
22.6

26.1
27.72
27.47
26.35

31.1
69.35

Equat(m

11
I-2
13

14
15
16

‘ 17

19
18.5
18.8
19.25

18
17.82
17.85
18.25

23.25
23.25
23.75
23.62

26.12
56.25

-45Q

-90’J
Heater

18
B

19.25
23.25

18.63
25.25

.

.
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Figure 1. - Ckriantatfonof
exes of cooriklnatas.

Figure 3. - Scheme of solution
of problem of ~avitational
thermal convection.

Figure 2. - Computation of volumetric
velocity of convection.

Figure 4. - Dependence of convection
criterion on relative thermal con-
ductivity of surrounding mass.

.

.

Figure 5. - Distribution of convection veloc-
ities v, temperatures 6, and heat flows over
diameter of vertical channel of’round cross
section. Heat conductivity of surrounding
mass is equal to that of the fluid.

Figure 6. - Isollnes of equal velocities,
temperatures, and heat flows over
section of vertical channel. Heat
conductivity of surrounding mas is
equal to that of the fluid.
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Rtgure ~. - Distribution of velocities and
temperatures over radius of vext~oal
ohannel of round croaa aectLon. Heat con-
ductivity of Surrounding mass is Small,
equal, or infinitely large in comparison
with heat conductivity of fluid.

.

.

Figure 8. - Superposition of forcedandfree
thermalconvectioninverticalchannelof
roundcrosssection. Distribution of veloc-
ities and temperaturesoverchanneldiameter
for dtfferent combinations of magnitude of
vertical temperature gradient and magnitude
of volumetric veloclty of forced motion of
fluid . Axial s~etry.

.-.
Figure 9. - Isollnes of equal tiwiw e=o-

nents in the plane of auxiliary coordi-
nates - equidistant straight lines.

.
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R@re 10. - Isolines of equal vertical temperature
gradients in the plane of auxiliary coordinates;
two families of hyperbolas, referred to their
asymptotes.

Figure 12. - msition of axes of
coordtites and components of
the temperature @adient for
an inclined slit. Total width
of slit, m.

Figure 11. - Isolines
of a channel in the
il.iarycoordinates;
curve.

of closednass
plane of aux-
transcendental

-.

....

I /

/ ‘
5@/

/
{

/

/ ‘
Zff w a Lw fim.1

Hgure 13. - Temperature dependence
of the convection parameter of
water.

.

.



200 NACA TM 1407

.

Juncti

.-

Al-m _COnstantan
.!,..- wirea

ons

Mgll I l’

Copper wir
Ato switch

= \ I:l];: galvanomet

,ea
of
er

Figure 14. - Seotion of glass model for inves-
tigation of thermal convection. Gross
section of the burette, the charge of
magnesia, the aluminum Jaoket,thearrange-
mentofthethermocouplejunotloneendthe
leadwires.

k-.— ------- --
l’~:”- ->>
I --4.---s-” \--=- ----- ,

Constant

}

Copper

.-

Figure 15. - Arrangement scheme of two pairs
of “transverse” thermocouples for determi-
nation of azimuth of diametral anti.symmetry.

..

.
.

.

.
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IM.fww 16. - Strudwral and df30tTiCFll edm?Ic Of metal model for iuvesti@.ica of therm!Q convection:
illmmciow of the br8EB tube d the ntcdel A; e, =1; B, charge; 1.and 2, two stages d averaging
~ql.OS; -bI, working thermometer in D&war flank;”tzj O~trOi thermm&r in other Wwer; It,

au~tlc ewitch ef galvuuomwberl’;O, neutrel lrnd;B,llgntsame; M, phetomeordimg apparatus.

~igure 17. - E!ahamem? ammeotti h cmtcmatio
ewitoh for low-voltage current aouroe : 3,

KLeotmmsgoet of autcmtic cwftch; 1, mrkfng
contact, cceuwci%d in frma cam &L& & small
~hTOlleUS tiar; 2, block Ccntuct eWWMX$ by
araWmre of elootram~ at W mcment &
apratien.

Figure 18. - Bchmw of connecting h automatlo
ewltch for hi~-voltage ourrent wmxee (hezd
remtlfier): F, IMcbm@et of cwitoh; 1,
working ocm’tact, oenneatsd in from cam disk.



Figure 19. - Conctmction

of movable hecter coil

for themcI imestigction

of prepred m?iel: 1,
Glass tube; 2, copper

PUIIW, 3, high reOic-

tance coil of heater.

,

N8

t, 1

~

“f;,,&_
L-—---L --------------

Figme 20. - Cnuatructlonal eaheme Of &l

and electrical scheme of the=l investi-

gation CU tiel: A, ikokst of rmlel; M,

charge M EiIgI!J3Bhj II, movable heater

call; nmbers 1 and 8, stegcs of averaging

tklUX&teZB Colmeotea tO lnms of au~tic

cvitgh. Gradueted VOMJW’C 001T9SpXd.iW ta

7.15 c, 0.3 ti~ivOlts; r,SaM ~COI+W

~lva-tar .

,

Figure Zl. - Derivation

of Met kdcnce b

W7mectkm with themal

investigation of pre-
pared models: 1, Tube
of mdcl; Z, movable
heater coil wvins with
velocity T; s, crOBO-
EectlOMl m’ec of *1

tube; d8, elmlmt of

m=iel lemgth.
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Figure 22. - Variation of temperature in a
given section of model in thermal investi-
gation as a function of the (or coordinate).

aA t 1 !

25..0 J
.x

m

a

Figure 23. - Variation of logarlth of
temperature In a given aecticm a6
a function of time (or coordinate).
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Figure 24. - Result of e%i~tihtingcenter photograph of figure
I. ~or”motion of heater uward and motion of heater down-
ward, the points satisfactorily reproduce the form of figure
25. Temperature scale: 38 divlal~ correspond to 4.5°C.
Kmbers of time mrks onaxisarelaidoffofabscissas.
Zeroistakenas instant of maximum temperature.



204 .NACA TM 1407

.
~ 25 3 lg(l%,i-%1 —

i , $

Figure 25. - Schematic comparison of laws of heat. transfer by
free convection (table VIII). G-alarge scale, position of
experimental points obtained on different models (different.
symbols): at laminar regime - vertical band; at above-critical
regime - horizontal band. On smell ecale, heat transfer
upward from fluid to fluid”- broken line I; from solld body”
to unbounded fluld - curve II; from solid body to solid body
through fluid layer - curve III.

-.

m

Figure 26. - Spontaneous rotation of azimuth
of diametral antisymmetry, recorded by two
pairs of “transverse” thermomuplea, for
time interval of 26 minutes. Along axis
of coordinates the “relativen transverse
differences of temperature in dtameters
of model D.

.

.

Figure ~.’- Sketch of “theoretical
distribution of velocities v,
temperatures @, end heat flows q
in two sections of model, and
shape of streamlines (eymmetry
plane) for case of presence of
heat losses in walls of model q’.

.

.
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Figure 28. - Assumed distribution of
velocities v, temperatures e, and
transverse temperature differences
e+-e- for model heated from below
for case of presenoe of heat losses
through walls in leminar regime of
thermal convection. Comveotion
ceases at height z = O. Abwe thla
section heat transfer occurs only
through modecular conduction accord-
ing to exponential law. Temperature
of surrounding medium is taken as
zero temperature. In sectton~
velocityhas value vm.

Time

Figure 29. - I&ear dependence
of logarithm of steady temp-
erature on time convective
~ocess takes to reach corres-

Wg thermocouple.

Sec

I 1.

i“ + 101cm
Heater log

.

.

Time

Figure 30. - Linear dependence
of logarithm of transverse
steady temperature differace
on time for attaining convective
process.

Ftgure 31. - Result of harmonic analysis
of photographs of figure XI. The
linear dependence of (mean) phase angle
of a heat wave on logarithm of coordi-
nate of transverse thermocouple.
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Figure 32. “Iiatural” tharwl

Vibrctimlc in a model in-
cltid E+ an ,angle of 45°

to vertical, deecribeil by

cEqlt+lrtI’cm8yerBe ~ , :

eter. Arrows indicate

IIWtantm ef connaating and

dincennactizlg of hE@er

coil. Powem, 3.0 calories

F eecond.

;.’,

k
I 1, J

Figma 33. - Awatue for Investigaticrn

of mean ~ri*ral teqaratme aver e

tira langth of vertical model: 1, Stmfi;
2, piston; S, reservoir vith mrcuIx 4,

hot ~ ef liquid calm, 5, w’fable

tube of nwlel; 6, tmuperature meacwlmg
raeiwtence coil; 7, vetfu cceling; 8,

SUPPIY reeervolr; 9, bridge cireult for
maeeur~ teaperatureB.

Gd-
Figure34. - Ermge Circuit

fm ~- t.mperatnma :

6, Meaam’bg resistance 0011;

9, branches CU bridge; 10,

knife switch fer indloetin.g

temprcturc 6cale cm pbOtO-

&m@8; 11, automtic &vIce
for Heat- 5mr0 line and

time I13rkc en photographs.

“

-KJZ7 “
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Fi&lre33. - Dlstributi.onof masn periphmal

-~x Ova height of vm’tisalmodel.
,IeR - sketch, CU diaplacament alomg verticml

of hot .bottcitand cold top of water oolnmn.

Right - .aUtczmticphoto~ord of lmmperatmre;
,x,- scale defl.wtion 4 C; 1 - end of nom-
:d=~ ‘?- .gRa Oormlestingh heuter; 2-

tampmrawe & hot bottom; 3 - axpmlmltial law
of dietrilmtionof msan ~ipheral tamparatura
In fluid near hi bottom; 4 - ohareot~lstio
tsmpereturagradient in oenter pm-t M cohmsy
5- arWnentiEl Law or taqwratsre dietribu-
tiom near col& top; 6 - taanperatureof cold
top; ~ - exponential law of change with tjnm
af temperature of tip after dmultaneous cOn-
mctiug of haahsr and watar cooler. ~ro line
is m@md by homrly tima mmks.

-7

Figure 36. - 6ketsh of apperatms for imvestige-
tiom of temperature distribution by method of

variable- @@h column : 1- Vartioal model

tube; 2- hot bottom; 3- rubber paok~; 4-

heater COil; 5 - mvable piL+_b3U- ool.d top of

fluid columm; 6 - lug for pile driver cable;

~ - cold reaerqoir; 8- flmifl column where

congestive wticm takes place; 9 - two taper-

atnre mmnring resistances fcnmimg two arm

of maamrlng bridge; 10- Imife eyiiwh of

soele deflastiun; U. - autcmtic device for

anrking tim amd zero llna.
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Figure 37. - Records of temperature differences by nethod of variable-length column.

T
.-.----
—-n n—-. .
—. —-—-.
= =_—
-- -:-
= L-

-.. -—

Fim.n?e 38. - Method of movable
~lunger: Movable@mger

of prismatic vessel:
large ob$ective; A,
thermal phenomenon is

Figure 39. - optioal method
Point source of-light; C,
prismatic vessel in which
produced; B, diaphragm with aperture a; O, trace
of undeflectetiimage of IWIt Hmce; b % QD
DE, and FB, arrangement of bands of spectnm on
diaphragm B for various processes In prismatic
vessel; a, b, and d, various locations of aperture
m wfth reaneck to auectrum bands.

.

.

on filament: Z, resistance
- ..--—-.—=—-

thermometer”co~l;
bottom of model.

3, hot
.-
.-
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40. - Path of rcy in prim

variable W of refraction.

—)(0 Ill—.—
8

d c’f.

+ A+
P

Q

D z

mgcm 41. - Mm3nEtratioml variant of Optioal

method of primmctic vessel: S, Crater of arc;

C, lcrga objeotive; A, glass Pvi6m; B, Primatic

vemcl; Q, projecticm objaotive; D, diaphragm

with a~; P, reversing prism; Z, dcmmctr.a- I

tion BcrWln.

Figure 42. - Gptiocl method of VOFMO.91 dafleatiuo-c:

S, Li@rt acmrce; C, larga obJeotiva; H, photo

obJeotiva; k, ground glcsn or ZIR@IIC plate; P and
Figuce 43. - Cptical Lattioe nffchod: 8, MgJit source;

G, hurizcaital tie adgaa; A, glc~a tube of modal;
A, nwdel plus objective; B, lattice; Q, photo objective;

D, pri~tic vessel; B, hmiter; 1, cold rasarvoir.
D, @round glass or photqraphio plat.-s, P&th of a nun-

daflactad ray cd of a ray defleoted by mxlel.
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Colder

Figue .$4.- Convection In cylindrical horizontal ohamel
observed by lattice method. Vertical straight line is
plumb line. Two \soline systems: Crosawiae systems of
mutually embracing curves and oval systemB in cemter are
isolinea of equal horizontal graikl.ent;other lines are
isollnes of equal vertical gradient. .-

lUCA TM 1407

.

(A)

(B)

Figure 4.5.- Convection in cylindrical horizontal cha~l obsemedby lattice method:
A, Heating from right”,cooli”~.from left; vertical line If plumb ltie. B, heating
from right down, cooling from left up. Two pairs of mutually embraoing isolines
belong with isollnes of equal vertical gradients. Ieolines forming closed ovals
in center belong with isollnes of equal horizontal Wadients.

.
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Figure 46. - Computation of diffraction phenomena:
00, Optical axis of photogaphio a~ratue; P,
rods in plane of lattice; q ~ photo8ra~Lc pkte;
Z, approximate fooal distanoe; d, distance between
rods of lattLee; x, distance between bands on
photo~aph.

p-w-q

.

.

I

Figure 47. - Model for tmvestigetion of convection h an
inclined slit by optical Z.attioemethod.

.
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Figure 48. - Computation of’sensitivity of opttoal lattice
method: s, Thickness of model; Z, distanoe from moael —
to lattice; x, distance between lattlce rods. Position
of wave front of light wave.

—.

.

Figure 49. - Posltlon of axes
of coordinate for horizontal
Ohannal.

----

.

.
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Figure 50. - A, B, C, and D, fcol.ineEof egual components of temperature
gradient in horizontal chazmel, theoretically computed, including
second approximation. Heating is from right.
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Figure 51. - Model for Investigation of thermal convection in
a spherical cavity: D, Heater; X, cooler; K, channel for
filling moflelwith water; A and B, looation of external
thermocouples; dots indicate location of 18 interior thermo-
couples.

t’

.

.

Figure 52. - Lcoatlon and numbering of interior
thermocouples Immodel for investigating thermal
convection III spherical cavity.

.

.-
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F@ure53. -lto3- Results of investigation of thermal convection
In apherlcal cavi~.

6

Figure 53. - 4 to 6 - Results of Wveskigation of the=l convection
in spherical cavity.
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Figure 53. - 7 to 9 - Results of investigation of .@ermal oonve<tion
in a spherioal cavity. Iast ~aph refers to ease of axis of
symmetry of model hollned to vertical by ~“ angle.
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Figore 54. -
chennel of

Model for investlget~ comvectlon in horizontal
round cross sectlcn by optlcel lattioe method.

Figure 55. - Assumed di~ribution of convective flows cv&
section of inclined round pipe.

.

‘8
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Figure 56. - Vertical well filled with
evaporating water and distribution of
cross-sectional mean humidity.
Line UT corresponds to convective
prooeas. Line AB correBponda to
critical gradient of humidity; Zo,
critioal depth. Line AK corre,9pondB
to purely molecular diffusion of
water vapor.

t

\\

‘----.Q---

z’ b

.

.—
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—

Figure 57. - Theoretical curve of water
~aporation in ve@ioal well.. The ex-
ponential curve aa corresponds to con-
vection regime. Parabola bb corresponds
only to the mclecular dlffusfon. On
attaining criticaldepth, the exponentj,al
drying law goes over intathe psxabolic.

.

.
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(B)

(c)

Figure 1. - Examples of automatic photo recordings in thermally investigated models.
Upper record - 0.3 millivolt..-aduation curve (corresponds to 7.150C). Lower record
- datum temperature of Dewar flask. The switching galvanometerscycle (time marks)
82.5 =econds. Upper photograph A - velocity of heater mction is too smell, the curves
are almost symmetrical. Center photograph B - velocLty of heater motion is the most
advantageous, photograph is suitable for measurements. hwer photo~aph C - velocity
of motion is large, increasein tempentme is almost independent of velocity of

heater motion. Graduation record is no% marked on lower photograph. on all ptioto-
graphs only initial or middle parts of entire length of record are given.
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Figure II. - Thermal convection In pipe of round croB8 section observed”with aid of
light-scatter= particles, Below - enameled wire of high-resLetince”heater. Axtal-
syimnetrioalphenomenon developing inside heater (along periphery fluid rises, along
the axts fluid descends) spontaneous- changes into diametrally entisymmetrical
phenomenon developing over heater (on right fluid risesJ-a left flu~” descends).
Diameter of tube, 3.8/4.0 centimeters (model IV, table S).

I

.

.

Figure 111. - Form of streamlines photographed by means OF light-scattering perttcles
(upper part, figure II). Tube without heat insulation. -Above - face of cold top.
Right - fluid rises. Left - fluid dbscends.

— -0
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Figure IV. - Ncnstatlo~ regime of lsminar thermsl
convection, determined by method of temperature record-
ing with aid of program switch in vertical model.
Wximum power, 0.54 calorie per second. Duration for
each power stage, 3 hours. Upper line-- record of lower
aet of thermocouples.

I’igureV . - Nonstationary regime of braas rod introduced
Into model in place of fluld. Sharp difference in thermal
phenomena in aolifirod as compared with phenomena in fluid
(fig. IV) Is noted.



222 NACA TM 1407

.

(A)

(B)

.

Figure VI. - Evaluation of figure V_’bymema of accelerated rekbrd. “Vertical gapEJexe
hour ~rk6 of time. A - corresponds to powers:0.092, 0.186, 0.304, andO.42 calorie
per seccmd. B - Corresponds to Towers: 0.028, 0.056, 0.09,_and 0.13 ca@ie per Becond.
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(A)

Figure VII. - Rectid of starting period in vertical medel.
tiretion of cycle of switching, 82.5 seconds. Record A -
Tirst occurrence of “natural” vibration is notetf.

Figure VIII. - lbnstationa~
regime of themal convection in
vertical model: Reaching Of
convective thermal process in
turn to succeeding stages of
everaging thermocouples.

(B)

Temperature of
0.48 watt; B -

Dewar’13;2%.
O.so-wtitt.

Figure IX. - Photorecord of temperature of lower
averaging thermocouple-~er curve, and two
transverse thermocouples; lower and upper curves
below zero line. No-t-ealmost instant.sneas reaction
of transverse thermocouples, characterizing intenait~
of process of heat transfer, in comparison with
smooth reaction of averaging thermocouples, charac-ter-
izing result of process of heat transfer by convection,
‘l%emodel axis inclined 4& tc vertical.

.

.
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(A)

(B)

.

(c)

Figure XXII. - Msplaceme’nt method. Recortifor tiifferentheating powers. A - ~.~4

calorie per pecond; B - 0.056 calorie per second; C - 0.090 calorie per second.

Note exponential variation of temperature near face
of aiaplacea rod and increase in

instability for certain lengths of fluiilcolumn. l&del is vertical.

;
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(A) (B) (c)

(D) (E) (F)

Figure 2?KII. - Convection in vertical slit investi~ted bv orrbical latkloe method.
Iattice: Rods of diameter, 1.3 millimeters; diet&e, 1“.7~illimeteri; gap, 3
millimeters between axes. Center of ’photograph is vertical plmb lin~, A - heat- ‘
i~ pOWOr, 18 watts; B - 24 ~atta; C“- 35 watt~; D - 58 watt=; E - 72 watt=; ad
F - 87 watts. Effect of diffraction,obserped on photograph D, E, and”F from the
left upward: bands are blurred; on photograph E same is observed on right downward.
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(A) (B)

Figure XIX. - Convection in incllned slit investigated by lattice method. Letters C,
H, and U denote oold, hot, and uppe~ part of model. Power, 87 watts. Photograph A -
inclination 1< to vertical, B - 35 to vertical. Note apparent curv~ of plumb
line becauae photo objective was focuae~ on central plane of model; the plumb llne~
being closer to objective. Objective in strongly d“Sflectedrays forming image of
lateral parta of model ‘saw” plumb line to right of central plane of model; in non-
deflected

Figure XX.

central rays, to left of central plane of madel.

c u

H L

- Convection In horizontal slit Investigated by lattice method. Letters
C,H, U, and L mark cold, hot, upper,and Mwer &rt,a of model. Heating pwer, 64
watts. Iattfce rods horizontal. Vertical plumb line ia seen. Bands indicate
presence of convection (Iaplacian of temperatures not zero). Wave-l&e form of
bands indicates cellular structure of convective flow; 10W~ing of bands corres-
ponding to downward flow, raising to upward flow.
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Fi~e XXIII. - Photorecord similsr to preceding record. Heeting
power 1 1/2 times smaller then on last record.

Figure XXIV. - Double reproduction of photographs XXII findXXIII. Edhpl&orecords
coincide in convective pert.
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Figure XIV. - Photorecord of temperature distribution along a rotating model. Velocity
of rotation onoe per 24 hours. Direotion of rotation indicated by arrti”. Temperature

of coldest thermocouple is zero (arc of circle). Temperature of equidistant even aver-
aging thermocouples 1s recorded upward. Temperature of Jacket is recorded below. Above
critical regime of thermsl convection arises for almost vertical errangetibnt of model.

Note remains of unsteady starting regime at start of record. Heating power is moderate.

(A) (B)

.

(A) (B)

Figure XXVI. - Bame as on preceillng figure, considerable heati~—pawer.
Sensitivity of’galvanometersreduced. Jacket temperature is recorded
below (this record does not appear on photo b). Temperature of datum
(Dewar) recorded lower.

“

?
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Figure XXVII. - Same as on preceding figure. Senaitlvity
inoreased. Fhotogreph shows clearly character of
unateadineas in above-critical regime.

NACA -L.a@ey FleId,Va.


